NrgEdge Editor

Sharing content and articles for users
Last Updated: July 26, 2017
1 view


World chokepoints for maritime transit of oil are a critical part of global energy security. About 61% of the world's petroleum and other liquids production moved on maritime routes in 2015. The Strait of Hormuz and the Strait of Malacca are the world's most important strategic chokepoints by volume of oil transit.

The U.S. Energy Information Administration (EIA) defines world oil chokepoints as narrow channels along widely used global sea routes, some so narrow that restrictions are placed on the size of the vessel that can navigate through them. Chokepoints are a critical part of global energy security because of the high volume of petroleum and other liquids transported through their narrow straits.

In 2015, total world petroleum and other liquids supply was about 96.7 million barrels per day (b/d).1 EIA estimates that about 61% that amount (58.9 million b/d) traveled via seaborne trade.2 Oil tankers accounted for almost 28% of the world’s shipping by deadweight tonnage in 2016, according to data from the United Nations Conference on Trade and Development (UNCTAD), having fallen steadily from 50% in 1980.3

International energy markets depend on reliable transport routes. Blocking a chokepoint, even temporarily, can lead to substantial increases in total energy costs and world energy prices. Chokepoints also leave oil tankers vulnerable to theft from pirates, terrorist attacks, political unrest in the form of wars or hostilities, and shipping accidents that can lead to disastrous oil spills.

The seven chokepoints highlighted in this report are part of major trade routes for global seaborne oil transportation. Disruptions to these routes could affect oil prices and add thousands of miles of transit in alternative routes. By volume of oil transit, the Strait of Hormuz, leading out of the Persian Gulf, and the Strait of Malacca (linking the Indian and Pacific Oceans) are the world's most important strategic chokepoints. This report also discusses the role of the Cape of Good Hope, which is not a chokepoint but is a major trade route and potential alternate route to certain chokepoints.

Figure 1. Daily transit volumes through world maritime oil chokepoints

Figure 1. Daily transit volumes through world maritime oil chokepoints

All estimates in million barrels per day. Includes crude oil and petroleum liquids. Based on 2016 data.
Source: U.S. Energy Information Administration

Table 1. Volume of crude oil and petroleum products transported through world chokepoints and the Cape of Good Hope, 2011-16 (million b/d)Location201120122013201420152016Strait of Hormuz17.016.816.616.917.018.5Strait of Malacca14.515.115.415.515.516.0Suez Canal and SUMED Pipeline3. el-Mandab3. Straits3. Straits2. Canal0. of Good Hope4. maritime oil trade55.556.456.556.458.9n/aWorld total petroleum and other liquids supply88.890.891.393.896.797.2Note: Data for Panama Canal are by fiscal year. 

Sources: U.S. Energy Information Administration analysis based on Lloyd's List Intelligence, Panama Canal Authority, Argus FSU, Suez Canal Authority, GTT, BP Statistical Review of World Energy, IHS Waterborne, Oil and Gas Journal, and UNCTAD, using EIA conversion factors.4

Oil tanker sizes

Ships carrying crude oil and petroleum products are limited by size restrictions imposed by maritime oil chokepoints. The global crude oil and refined product tanker fleet uses a classification system to standardize contract terms, to establish shipping costs, and to classify vessels for chartering contracts. This system, known as the Average Freight Rate Assessment (AFRA) system, was established by Royal Dutch Shell six decades ago, and the London Tanker Brokers' Panel (LTBP), an independent group of shipping brokers, oversees the system.

AFRA uses a scale that classifies tanker vessels according to deadweight tons—a measure of a ship's capacity to carry cargo. The approximate capacity of a ship in barrels is determined using an estimated 90% of a ship's deadweight tonnage, which is multiplied by a barrel-per-metric-ton conversion factor specific to each type of petroleum product and crude oil, as liquid fuel densities vary by type and grade.

The smaller vessels on the AFRA scale—the General Purpose (GP) and Medium Range (MR) tankers—are commonly used to transport cargos of refined petroleum products over relatively shorter distances, such as from Europe to the U.S. East Coast. Their smaller size allows them to access most ports around the globe. A GP tanker can carry between 70,000 barrels and 190,000 barrels of motor gasoline (3.2-8 million gallons), and an MR tanker can carry between 190,000 barrels and 345,000 barrels of motor gasoline (8-14.5 million gallons).

Long Range (LR) class ships are the most common ships in the global tanker fleet, as they are used to carry both refined products and crude oil. These ships can access most large ports that ship crude oil and petroleum products. An LR1 tanker can carry between 345,000 barrels and 615,000 barrels of gasoline (14.5-25.8 million gallons) or between 310,000 barrels and 550,000 barrels of light sweet crude oil.

A large portion of the global tanker fleet is classified as AFRAMAX. AFRAMAX vessels are ships between 80,000 deadweight tons and 120,000 deadweight tons. This ship size is popular with oil companies for logistical purposes, and many ships have been built within these specifications. Because the AFRAMAX range exists somewhere between the LR1 and LR2 AFRA scales, the LTBP does not publish a freight assessment specifically for AFRAMAX vessels.

Over the history of AFRA, vessels grew in size, and newer classifications were added. The Very Large Crude Carrier (VLCC) and Ultra-Large Crude Carrier (ULCC) were added as the global oil trade expanded and larger vessels provided better economics for crude oil shipments. VLCCs are responsible for most crude oil shipments around the globe, including in the North Sea, home of the crude oil price benchmark Brent. A VLCC can carry between 1.9 million and 2.2 million barrels of a West Texas Intermediate (WTI) type crude oil.

Figure 2. Average Freight Rate Assessment (AFRA) Scale-Fixed

Average Freight Rate Assessment (AFRA) Scale - Fixed

Source: U.S. Energy Information Administration, London Tanker Brokers' Panel5
Note: AFRAMAX is not an official vessel classification on the AFRA scale but is shown here for comparison.

Strait of Hormuz

The Strait of Hormuz is the world's most important chokepoint, with an oil flow of 17 million b/d in 2015, about 30% of all seaborne-traded crude oil and other liquids during the year. In 2016, total flows through the Strait of Hormuz increased to a record high of 18.5 million b/d.

Located between Oman and Iran, the Strait of Hormuz connects the Persian Gulf with the Gulf of Oman and the Arabian Sea. The Strait of Hormuz is the world's most important oil chokepoint because its daily oil flow of about 17 million barrels per day in 2015, accounted for 30% of all seaborne-traded crude oil and other liquids. The volume that traveled through this vital choke point increased to 18.5 million b/d in 2016.

EIA estimates that about 80% of the crude oil that moved through this chokepoint went to Asian markets, based on data from Lloyd’s List Intelligence tanker tracking service.6China, Japan, India, South Korea, and Singapore are the largest destinations for oil moving through the Strait of Hormuz.

Qatar exported about 3.7 trillion cubic feet per year of liquefied natural gas (LNG) through the Strait of Hormuz in 2016, according to BP’s Statistical Review of World Energy 2017.7 This volume accounts for more than 30% of global LNG trade. Kuwait imports LNG volumes that travel northward through the Strait of Hormuz.

At its narrowest point, the Strait of Hormuz is 21 miles wide, but the width of the shipping lane in either direction is only two miles wide, separated by a two-mile buffer zone. The Strait of Hormuz is deep enough and wide enough to handle the world's largest crude oil tankers, with about two-thirds of oil shipments carried by tankers in excess of 150,000 deadweight tons coming through this Strait.

Pipelines available as bypass options

Most potential options to bypass Hormuz are currently not operational. Only Saudi Arabia and the United Arab Emirates (UAE) have pipelines that can ship crude oil outside of the Persian Gulf and have additional pipeline capacity to circumvent the Strait of Hormuz. At the end of 2016, the total available crude oil throughput pipeline capacity from the two countries combined was estimated at 6.6 million b/d, while the two countries combined had roughly 3.9 million b/d of unused bypass capacity (Table 2).

Saudi Arabia has the 746-mile Petroline, also known as the East-West Pipeline, which runs across Saudi Arabia from its Abqaiq complex to the Red Sea. The Petroline system consists of two pipelines with a total nameplate (installed) capacity of about 4.8 million b/d. The 56-inch pipeline has a nameplate capacity of 3 million b/d. The 48-inch pipeline had been previously operating as a natural gas pipeline, but Saudi Arabia converted it to an oil pipeline. The switch increased Saudi Arabia's spare oil pipeline capacity to bypass the Strait of Hormuz from 1 million b/d to 2.8 million b/d, but this volume is only achievable if the system operates at its full nameplate capacity. In 2016, Saudi Aramco announced that it plans to expand the capacity of the East-West pipeline to 7 million b/d, with a scheduled completion by end-2018. To date, there has been little progress on the pipeline expansion.

Saudi Arabia also operates the Abqaiq-Yanbu natural gas liquids pipeline, which has a capacity of 290,000 b/d.

The UAE operates the Abu Dhabi Crude Oil Pipeline (1.5 million b/d) that runs from Habshan (a collection point for Abu Dhabi's onshore oil fields) to the port of Fujairah on the Gulf of Oman, which allows crude oil shipments to circumvent the Strait of Hormuz. The government plans to increase the capacity of this pipeline to 1.8 million b/d.

Figure 3. Map of the Strait of Hormuz

Map of Strait of Hormuz

Source: U.S. Department of State

Other pipelines are currently unavailable as bypass options

Saudi Arabia has two additional pipelines that run parallel to the Petroline system and bypass the Strait of Hormuz, but neither of the pipelines has the ability to transport additional volumes of oil if the Strait of Hormuz is closed.

The 1.65 million b/d, 48-inch Iraqi Pipeline in Saudi Arabia (IPSA), which runs parallel to the Petroline from pump station #3 (11 pumping stations run along the Petroline) to the port of Mu'ajjiz, just south of Yanbu, Saudi Arabia, was built in 1989 to carry 1.65 million b/d of crude oil from Iraq to the Red Sea. The pipeline closed indefinitely following the August 1990 Iraqi invasion of Kuwait. In June 2001, Saudi Arabia seized ownership of IPSA as compensation for debts Iraq owed and converted it to transport natural gas to power plants.

Other pipelines, such as the Trans-Arabian Pipeline (TAPLINE) running from Qaisumah in Saudi Arabia to Sidon in Lebanon or a strategic oil pipeline between Iraq and Turkey, have been out of service for years because of war damage, disuse, or political disagreements. These pipelines would require extensive renovation before they could transport oil. Relatively small quantities, several hundred thousand barrels per day at most, could also be transported by truck if the Strait of Hormuz were closed.

Table 2. Operating pipelines that bypass the Strait of Hormuz, 2016Pipeline nameCountryStatusCapacityThroughputUnused capacityPetroline (East-West Pipeline)Saudi ArabiaOperating4.81.92.9Abu Dhabi Crude Oil PipelineUnited Arab EmiratesOperating1.50.51.0Abqaiq-Yanbu Natural Gas Liquids PipelineSaudi ArabiaOperating0.30.30.0Iraqi Pipeline in Saudi Arabia (IPSA)Saudi ArabiaConverted to natural gas0.0-0.0Total All estimates expressed in million barrels per day (b/d). Unused capacity is defined as pipeline capacity that is not currently used but can be readily available.

Sources: U.S. Energy Information Administration, Lloyd’s List Intelligence.

Strait of Malacca

The Strait of Malacca, linking the Indian Ocean and the Pacific Ocean, is the shortest sea route between the Middle East and growing Asian markets. Flows through the Strait of Malacca rose to 16 million b/d in 2016, retaining its position as the second busiest transit chokepoint.

The Strait of Malacca, located between Indonesia, Malaysia, and Singapore, links the Indian Ocean to the South China Sea and to the Pacific Ocean. The Strait of Malacca is the shortest sea route between Persian Gulf suppliers and the Asian markets—notably China, Japan, South Korea, and the Pacific Rim.

Oil shipments through the Strait of Malacca supply China and Indonesia, two of the world's fastest-growing economies. This Strait is the primary chokepoint in Asia, with an estimated 16.0 million b/d flow in 2016, compared with 14.5 million b/d in 2011. Crude oil generally makes up between 85% and 90% of total oil flows per year, and petroleum products account for the remainder (Table 3).

At its narrowest point in the Phillips Channel of the Singapore Strait, the Strait of Malacca is only about 1.7 miles wide, creating a natural bottleneck with the potential for collisions, grounding, or oil spills.8 According to the International Maritime Bureau's Piracy Reporting Centre, piracy, including attempted theft and hijackings, is a threat to tankers in the Strait of Malacca, and ships saw an increasing number of attacks in 2015. Data for 2016 were not available at the time of publication.9

If the Strait of Malacca were blocked, nearly half of the world's fleet would be required to reroute around the Indonesian archipelago, such as through the Lombok Strait between the Indonesian islands of Bali and Lombok, or through the Sunda Strait between Java and Sumatra.10 Rerouting would tie up global shipping capacity, add to shipping costs, and potentially affect energy prices.

Several proposals have been made to build bypass options and reduce tanker traffic through the Strait of Malacca. In particular, China and Myanmar (Burma) commissioned the Myanmar-China natural gas pipeline in 2013 that stretches from Myanmar's ports in the Bay of Bengal to the Yunnan province of China. The pipeline has a capacity of 424 billion cubic feet per year. The oil portion of the pipeline was completed in August 2014 and it is now operational at full capacity since the 260,000 b/d refinery in Yunnan, China, began operating in June 2017. The Myanmar-China oil line transports Middle Eastern oil, allowing it to bypass the Strait of Malacca.11

The Strait of Malacca is also an important transit route for liquefied natural gas (LNG) from Persian Gulf and African suppliers, particularly Qatar, to East Asian countries with growing LNG demand. The biggest importers of LNG in the region are Japan and South Korea.

Table 3. Strait of Malacca oil and liquefied natural gas (LNG) flows, 2011-16million barrels per day201120122013201420152016Total oil flows through Strait of Malacca14.515.115.415.515.516.0crude oil12.813.213.313.313.914.6refined products1. (Tcf per year) Tcf = Trillion cubic feet.

Sources: U.S. Energy Information Administration analysis based on Lloyd’s List Intelligence, IHS Waterborne, BP.12

Figure 4. Map of the Strait of Malacca

Map of Straits of Malacca

Source: CIA Factbook

Suez Canal/SUMED Pipeline

The Suez Canal and the SUMED Pipeline are strategic routes for Persian Gulf oil and natural gas shipments to Europe and North America. These two routes combined accounted for about 9% of the world’s seaborne oil trade in 2015.

Suez Canal

The Suez Canal is located in Egypt and connects the Red Sea and the Gulf of Suez with the Mediterranean Sea. In 2016, total petroleum and other liquids (crude oil and refined products) and LNG accounted for 17% and 6% of total Suez cargoes, measured by net metric tonnage, respectively. The Suez Canal cannot handle Ultra Large Crude Carriers (ULCC) and fully laden Very Large Crude Carriers (VLCC) class crude oil tankers. The Suezmax was the largest ship that could navigate through the canal until 2010, when the Suez Canal Authority extended the canal depth to 66 feet to allow more than 60% of all tankers to transit the Canal, according to the Suez Canal Authority. In addition, almost 93% of bulk carriers and 100% of container ships have been able to transit the Suez Canal since 2010.13

In 2016, 3.9 million b/d of total oil (crude oil and refined products) transited the Suez Canal in both directions, according to data published by the Suez Canal Authority. Northbound flows rose by about 300,000 b/d in 2016, but southbound shipments decreased for the first time since at least 2009. Increased crude oil exports from Iraq and Saudi Arabia to Europe contributed to higher northbound traffic, while lower exports of petroleum products from Russia to Asia contributed the most to lower southbound traffic.

Most oil transiting the Suez Canal was sent northbound (2.4 million b/d) toward European and North American markets, and the remainder was sent southbound (1.5 million b/d), mainly toward Asian markets. Oil exports from Persian Gulf countries (Saudi Arabia, Iraq, Kuwait, United Arab Emirates, Iran, Oman, Qatar, and Bahrain) accounted for 84% of Suez Canal northbound oil flows. The largest importers of northbound oil flows through the Suez Canal in 2016 were European countries (78%) and the United States (14%). Oil exports from Russia accounted for the largest share of (17%) of Suez southbound oil flows, followed by Turkey (15%) and Netherlands (11%). North Africa (Algeria and Libya) made up 12% of the southbound flow. The largest importers of Suez southbound oil flows were Asian countries, with Singapore, China and India accounting for more than 50% of the total.

Total traffic through the Suez Canal has been steadily increasing since 2009, and total oil flows rose to more than 2 million b/d by 2014. The increase in oil shipments during 2015 and 2016 in particular reflect increased OPEC production and exports, including increased output in Iraq and Saudi Arabia, and increased exports from Iran in 2016 as sanctions targeting its oil exports were eased.

SUMED Pipeline

The 200-mile long SUMED Pipeline, or Suez-Mediterranean Pipeline, transports crude oil through Egypt from the Red Sea to the Mediterranean Sea. The crude oil flows through two parallel pipelines that are 42 inches in diameter, which have a total pipeline capacity of 2.34 million b/d. Oil flows north starting at the Ain Sukhna terminal along the Red Sea coast to its end point at the Sidi Kerir terminal on the Mediterranean Sea. SUMED is owned by the Arab Petroleum Pipeline Company, a joint venture between the Egyptian General Petroleum Corporation (50%), Saudi Aramco (15%), Abu Dhabi's International Petroleum Investment Company (15%), multiple Kuwaiti companies (15%), and Qatar Petroleum (5%). 14

The SUMED Pipeline is the only alternate route to transport crude oil from the Red Sea to the Mediterranean Sea if ships cannot navigate through the Suez Canal. Closure of the Suez Canal and the SUMED Pipeline would require oil tankers to divert around the southern tip of Africa, the Cape of Good Hope, which would add approximately 2,700 miles to the transit from Saudi Arabia to the United States. The increased transit time would also increase costs and shipping time, according to the U.S. Department of Transportation.15 According to the International Energy Agency (IEA), shipping around Africa would add 15 days of transit to Europe and 8–10 days to the United States. 16

Fully laden VLCCs going toward the Suez Canal also use the SUMED Pipeline for lightering. Lightering occurs when a vessel needs to reduce its weight and draft by offloading cargo to enter a restrictive waterway, such as a canal. The Suez Canal is not deep enough for a fully-laden VLCC and, therefore, a portion of the crude is offloaded at the SUMED Pipeline at the Ain Sukhna terminal. The now partially-laden VLCC goes through the Suez Canal and picks up the offloaded crude at the other end of the pipeline at the Sidi Kerir terminal.

In 2016, 1.6 million b/d of crude oil was transported through the SUMED Pipeline to the Mediterranean Sea, and then loaded onto tankers for seaborne trade. Flows via SUMED were relatively unchanged compared with 2015. Total oil flows via SUMED and the Suez Canal were 5.5 million b/d in 2016, 100,000 b/d more than in 2015. Total oil flows via the Suez Canal and SUMED pipeline accounted for about 9% of total seaborne-traded oil in 2015.

Table 4. Suez Canal and SUMED pipeline flows of oil and liquefied natural gas (LNG), 2011-16million barrels per day201120122013201420152016Total oil flows via the Suez Canal and SUMED pipeline3. Canal total flowscrude oil0. products1. oil2. (Tcf per year) northbound flowscrude oil0. products0. oil1. (Tcf per year) southbound flowscrude oil0. products0.60.811.21.41.1total oil0. (Tcf per year) pipeline crude oil flows1. Totals may not exactly match corresponding values as a result of independent rounding. Tcf = Trillion cubic feet.

Source: U.S. Energy Information Administration analysis based on Lloyd’s List Intelligence, Suez Canal Authority (with EIA conversions).

Liquefied natural gas (LNG)

LNG flows through the Suez Canal in both directions were 1.2 Tcf in 2016, accounting for 9% of total LNG transported worldwide.

LNG flows through the Suez Canal in both directions were 1.2 trillion cubic feet (Tcf) in 2016, accounting for about 9% of total LNG traded worldwide. Southbound LNG transit mostly originates in Nigeria, France (as re-exports), and Trinidad and Tobago, mostly destined for Egypt, Jordan, and Japan, which combined account for more than 65% of the total southbound LNG imports through the canal. Nearly all of the northbound transit (99%) is from Qatar and is mainly destined for European markets. The rapid growth in LNG flows through the Suez Canal after 2008 represents the expansion of LNG exports from Qatar.

LNG flows through the Suez Canal in both directions have declined from their peak of almost 2.1 Tcf in 2011. The decrease mostly reflects the fall in northbound LNG flows and is consistent with LNG import data for the United States, which show that total LNG imports fell dramatically between 2011 and 2016. U.S. LNG imports from Qatar fell from 91 billion cubic feet in 2011 to zero in 2014 and have remained at this level since then. The changes reflect growing domestic natural gas production in the United States, a decrease in LNG demand in some European countries, and strong competition for LNG in the global market. As a result, Suez LNG flows as a share of total LNG traded worldwide fell to 9% in 2016, compared with 18% in 2011.

Figure 5. Map of Suez Canal/SUMED pipeline

Map of Suez Canal/SUMED pipeline

Source: U.S. Energy Information Administration, IHS EDIN.

Bab el-Mandeb

Closing the Bab el-Mandeb Strait could keep tankers in the Persian Gulf from reaching the Suez Canal and the SUMED Pipeline, diverting them around the southern tip of Africa.

The Bab el-Mandeb Strait is a chokepoint between the Horn of Africa and the Middle East, and it is a strategic link between the Mediterranean Sea and the Indian Ocean. The strait is located between Yemen, Djibouti, and Eritrea, and it connects the Red Sea with the Gulf of Aden and the Arabian Sea. Most exports from the Persian Gulf that transit the Suez Canal and the SUMED Pipeline also pass through Bab el-Mandeb. An estimated 4.8 million b/d of crude oil and refined petroleum products flowed through this waterway in 2016 toward Europe, the United States, and Asia, an increase from 3.3 million b/d in 2011.

The Bab el-Mandeb Strait is 18 miles wide at its narrowest point, limiting tanker traffic to two 2-mile-wide channels for inbound and outbound shipments. Closure of the Bab el-Mandeb could keep tankers originating in the Persian Gulf from reaching the Suez Canal or the SUMED Pipeline, diverting them around the southern tip of Africa, which would add to transit time and cost. In addition, European and North African southbound oil flows could no longer take the most direct route to Asian markets via the Suez Canal and Bab el-Mandeb.

Table 5. Bab el-Mandeb oil flows, 2011-16million b/d201120122013201420152016Total oil flows3. Totals may not exactly match corresponding values as a result of independent rounding.

Sources: U.S. Energy Information Administration analysis based on Lloyd’s List Intelligence, Suez Canal Authority, and GTT, using EIA conversion factors.

Figure 6. Map of Bab el-Mandeb

Map of Bab el-Mandab (far)

Source: CIA Factbook

Turkish Straits

Although still an important chokepoint for petroleum liquids transit from the Caspian Sea region, the Turkish Straits have seen declining transit volumes since 2011, falling to 2.4 million b/d in 2016. Oil moving through these straits supplies Western and Southern Europe.

The Turkish Straits, which includes the Bosporus and Dardanelles waterways, divide Asia from Europe. The Bosporus is a 17-mile waterway that connects the Black Sea with the Sea of Marmara. The Dardanelles is a 40-mile waterway that links the Sea of Marmara with the Aegean and Mediterranean Seas.17 Both waterways are located in Turkey and supply Western and Southern Europe with oil from Russia and the Caspian Sea region.

An estimated 2.4 million b/d of crude oil and petroleum products flowed through the Turkish Straits in 2016. More than 80% of this volume was crude oil. These Black Sea ports are among the primary oil export routes for Russia and other Eurasian countries including Azerbaijan and Kazakhstan.

Oil shipments through the Turkish Straits decreased from 2.9 million b/d in 2011 to 2.4 million b/d in 2016. At its peak, more than 3.4 million b/d transited the straits in 2004, but the volume that traveled through the Turkish Straits fell in the mid-2000s as Russia shifted crude oil exports away from the Black Sea and toward the Baltic ports. Subsequent increases in production and exports from Azerbaijan and Kazakhstan resulted in an increase in shipments through the Turkish Straits, but the increasing trend did not last: Turkish Straits have seen a steady decrease in traffic over the past five years. These volumes may increase in the future as Kazakhstan’s production of crude oil increases and the country exports more crude oil via Black Sea. EIA expects Kazakhstan’s crude oil production to increase through at least the end of 2018 as volumes from the country’s Kashagan field continue to rise.

Only half a mile wide at the narrowest point, the Turkish Straits are among the world’s most difficult waterways to navigate because of their sinuous geography. About 48,000 vessels transit the straits each year, making this area one of the world’s busiest maritime chokepoints.18 Commercial shipping has the right of free passage through the Turkish Straits in peacetime, although Turkey claims the right to impose regulations for safety and environmental purposes. Bottlenecks and heavy traffic also create problems for oil tankers in the Turkish Straits.

Figure 7. Map of Turkish Straits

Map of Turkish Straits

Source: U.S. Government

Panama Canal

The Panama Canal is not a significant route for U.S. petroleum trade. The recently completed expansion of the canal is unlikely to significantly change crude oil and petroleum product flows, with the exception of U.S. propane exports. Crude oil and petroleum liquids tankers accounted for a small portion of total transit traffic through the canal in 2016.

The Panama Canal is an important route connecting the Pacific Ocean with the Caribbean Sea and the Atlantic Ocean. The canal is 50 miles long and only 110 feet wide at its narrowest point—the Culebra Cut—at the Continental Divide.19 More than 13,000 vessels transited the Panama Canal in fiscal year 2016, representing roughly 204 million tons of cargo.20 Goods originating in or traveling to the United States accounted for more than 67% of the total shipments passing through the Panama Canal during 2016; China’s share was a distant second at roughly 19%.21

Alternatives to the Panama Canal include the Straits of Magellan, Cape Horn, and Drake Passage at the southern tip of South America, but these routes would significantly increase transit times and costs, adding about 8,000 miles of travel.

Although petroleum and petroleum products represented 27% of the principal commodities that crossed through the Panama Canal from the Atlantic to the Pacific in 2016, that canal is not a significant route for global petroleum and petroleum product transit. Northbound (Pacific to Atlantic) traffic of petroleum and petroleum products accounted for only 9% of the total products traveling through the canal.22 In 2015, 1.7% of total global maritime petroleum and petroleum product flows went through the Panama Canal. According to the Panama Canal Authority, 921,000 b/d of petroleum and petroleum products were transported through the canal in fiscal year 2016, of which 843,000 b/d were refined products and the remainder was crude oil.23 About 84% of total petroleum (775,000 b/d) went southbound from the Atlantic to the Pacific in 2016.24

Some oil tankers, such as the ULCC (Ultra Large Crude Carrier) class tankers, can be nearly five times larger than the maximum capacity of the canal. To make the canal more accessible, the Panama Canal Authority, the body that operates the Canal, undertook an expansion program that was completed in June 2016. With the expansion, the Panama Canal Authority inaugurated a third set of locks that allows larger ships to transit the canal. This expansion was the first one since the canal was completed in 1914.25

The canal expansion involved deepening and widening some portions of the canal and constructing an additional, larger set of locks. Unlike the old lock system, which had two lanes of side-by-side traffic, the new set of locks is one large lane and allows four transits per day, supplementing the 25 daily transits using the older lock system. The wider and deeper navigation channels and larger locks allow for the transit of larger vessels through the canal. The maximum vessel dimensions in the old lock system, known as Panamax vessels, limited tankers to those of approximately 300,000 to 500,000 barrels of capacity of petroleum products such as gasoline and diesel fuel. The newer lock system allow the larger Neopanamax vessels to transit the canal, with estimated petroleum product capacities of 400,000 to 600,000 barrels (Figure 8).

The expansion of the Panama Canal is not likely to affect crude oil and petroleum product flows in the future, with the exception of U.S. propane exports. Previously, the size limitations of the canal created logistical bottlenecks for U.S. propane exports travelling to markets in Asia, necessitating ship-to-ship transfers. The new, larger Panama Canal locks allow most Very Large Gas Carriers (VLGC), the type of ship that carries propane and other hydrocarbon gas liquids (HGL), to transit.

Figure 8. Panama Canal and Lock System

Map of Panama Canal

Source: U.S. Energy Information Administration

Figure 9. Panama Canal size restrictions

Map of Panama Canal

Figure 10. Map of Panama Canal

Map of Panama Canal

Source: CIA World Factbook

Table 6. Panama Canal and oil flows, 2011-16thousand barrels per day201120122013201420152016Panama Canal total flowstotal oil7688138638771031934crude oil1211209213313479refined products647693771744897855Panama Canal southbound flowstotal oil609696719701826785crude oil697240486047refined products541624679653766738Panama canal northbound flowstotal oil158117144176205149crude oil524852847432refined products106699291131116Notes: Totals may not equal the sum of the components due to independent rounding. Data for the Panama Canal are by fiscal years (October 1 to September 30).

Sources: U.S. Energy Information Administration analysis based on Lloyd’s List Intelligence, Panama Canal Authority (with EIA conversions).26

Trans-Panama Pipeline

The Trans-Panama Pipeline (TPP), operated by Petroterminal de Panama, S.A. (PTP), is located outside the former Canal Zone near the Costa Rican border. It runs from the port of Charco Azul on the Pacific coast to the port of Chiriqui Grande in Bocas del Toro, Panama, on the Caribbean Sea. The pipeline began operating in 1982 with the original purpose of facilitating crude oil shipments from Alaska's North Slope to refineries in the Caribbean and in the U.S. Gulf Coast.27 However, in 1996, the TPP was shut down as oil companies began shipping Alaskan crude oil along alternate routes. In August 2010, the flow of the TPP was reversed, and the pipeline now transports oil from the Caribbean to the Pacific.28

In 2012, BP and PTP signed a seven-year transportation and storage agreement allowing BP to lease storage facilities located on the Caribbean and Pacific coasts of Panama and to use the pipeline to transport crude oil to U.S. West Coast refiners. According to PTP, BP has leased 5.4 million barrels of PTP's storage and committed to east-to-west shipments through the pipeline averaging 100,000 b/d. The route reduces the transport time and the costs of ships that have to travel around Cape Horn at the southern tip of South America to get to the U.S. West Coast.29 Shell, also reportedly signed a three-year agreement to lease capacity in early 2017, gaining access to storage and transshipment facilities, the pipeline network, and tanker docks for oil loading.30 According to Lloyd’s List Intelligence, 111,000 b/d of crude oil was transported through the pipeline to the port of Charco Azul in 2016.

Danish Straits

The Danish Straits are a vital route for Russian seaborne oil exports to Europe.

The Danish Straits are a series of channels that connect the Baltic Sea to the North Sea. They are an important route for Russian seaborne oil exports to Europe. An estimated 3.2 million b/d of crude oil and petroleum products flowed through the Danish Straits in 2016.

Russia shifted a significant portion of its crude oil exports to its Baltic ports after opening the port of Primorsk in 2005. In 2011, Primorsk oil exports accounted for almost half of all exports through the Danish Straits, although the volume fell to 32% in 2016. A small amount of oil (less than 50,000 b/d), primarily from Norway and the United Kingdom, also flowed eastward to Scandinavian markets in 2016.

Figure 11. Map of Danish Straits

Map of Danish Straits

Source: CIA Factbook

Cape of Good Hope

Although not a chokepoint, the Cape of Good Hope is a major global trade route. Crude oil flows around the Cape accounted for about 9% of all seaborne-traded oil.

The Cape of Good Hope, located on the southern tip of South Africa, is a significant transit point for oil tanker shipments around the globe. EIA estimates about 5.8 million b/d of seaborne-traded crude oil moved around the Cape of Good Hope in both directions in 2016. In 2015, crude oil transit around the Cape accounted for roughly 9% of global maritime trade of 5.1 million b/d.

In 2016, 4.3 million b/d of crude oil around the world moved eastbound, originating mostly from Africa (2.2 million b/d) and from South America and the Caribbean (1.6 million b/d). Eastbound crude oil flows were nearly all destined for Asian markets (4.1 million b/d). In the opposite direction, nearly all westbound flows originated from the Middle East (1.5 million b/d), mostly destined for the Americas, with the United States accounting for the majority of the total (75% of total flows). Europe was the destination for less than 12% of the flows.

The Cape of Good Hope is also an alternate sea route for vessels traveling westward that want to bypass the Gulf of Aden, Bab el-Mandeb Straits, and/or the Suez Canal. However, diverting vessels around the Cape of Good Hope increases costs and shipping time. For example, closure of the Suez Canal and the SUMED Pipeline would require oil tankers to divert around the Cape of Good Hope, adding approximately 2,700 miles to transit from Saudi Arabia to the United States, which would increase both costs and shipping time, according to the U.S. Department of Transportation.31 According to the International Energy Agency (IEA), shipping around Africa would add 15 days of transit to Europe and 8—10 days to the United States.32

Table 7. Crude oil transit via the Cape of Good Hope, 2011-16million b/d201120122013201420152016Total flows4. Totals may not equal the sum of the components due to independent rounding.

Sources: U.S. Energy Information Administration analysis based on Lloyd’s List Intelligence


  • Data presented in the text are the most recent available as of July 25, 2017
  • Data are EIA estimates unless otherwise noted.

2 0

Something interesting to share?
Join NrgEdge and create your own NrgBuzz today

Latest NrgBuzz

The Cubs Phenom: A Look At Anthony Rizzo
A look at Anthony Rizzo

Anthony Rizzo Players Can't Sit On Bench  According to a report from the Chicago Sun-Times, the world-famous Anthony Rizzo Phrase "Zombie Rizzo" has been told to never be used again. Of course, this is not the first time that the Zombified Chicago Cubs' first baseman has made headlines this year. A year ago, "Rosebud" was the catchphrase that he coined for himself. Also, there is Anthony Rizzo Shirts that come in his name. Now that the Cubs are World Series Champions, Anthony Rizzo is on his way to superstardom. He is leading the World Series in several categories, including hits, runs, home runs, RBI's, OBP, and SLG. Also, he's on track for a staggering year in hits, RBI's, and total bases, all while being second in home runs.

 The Cubs Phenom

This season the Chicago Cubs are over 3.5 million in earnings from the local broadcasts alone. The Cubs could lose a good deal of local revenue if they fail to get back to the World Series.  But the local revenue is not the biggest factor in the Cub's success. A large part of their success comes from two of their most popular players, third baseman Kris Bryant and first baseman Anthony Rizzo.  These two players are now the favorites to win the MVP awards this year, especially if the Cubs are able to stay on top of the wild card standings.  A Look at Rizzo  Anthony Rizzo is often compared to his college teammate Andrew McCutchen. Both players have performed well at the plate.

June, 24 2022
The Advantages Of Owning A Wood Pellet Mill

The wood pellet mill, that goes by the name of a wood pellet machine, or wood pellet press, is popular in lots of countries around the world. With all the expansion of "biomass energy", there are now various production technologies utilized to convert biomass into useable electricity and heat. The wood pellet machines are one of the typical machines that complete this task.

Wood pellet mills turn raw materials such as sawdust, straw, or wood into highly efficient biomass fuel. Concurrently, the entire process of converting these materials in a more dense energy form facilitates storage, transport, and make use of on the remainder of any value chain. Later on, you will find plans for biomass fuel to replace traditional fuels. Moreover, wood pellet machines supply the chances to start many different types of businesses.

What Is A Wood Pellet Mill?

Wood pellet machines are kinds of pellet machines to process raw materials including peanut shells, sawdust, leaves, straw, wood, plus more. Today the pellet mills can be purchased in different types. Both the main types include the ring die pellet mills as well as the flat die pellet mills. Wood pellet mills are designed for processing many different types of raw materials irrespective of size. The pellet size is very simple to customize with the use of a hammer mill.

The Benefits Of A Wood Pellet Mill

- The gearboxes are made of high-quality cast iron materials which provide excellent shock absorption and low noise. The wood pellet mills adopt a gear drive that makes a better efficiency in comparison with worm drive or belt drive. The gear drive setup really helps to prevent belt slippage while extending the lifespan in the belt drive.

- The equipment shell includes reinforced ribs and increased casting thickness, which significantly enhances the overall strength of those mills, preventing the breakage in the shell.

- The rollers and die are made of premium-quality alloy steel with 55-60HRC hardness.

- These mills adopt an appropriate wood-processing die-hole structure and die-hole compression ratio.

- The electric-control product is completely compliant with CE standard-os.

- The Emergency Stop button quickly shuts along the mill if you are up against an unexpected emergency.

How To Maintain A Wood Pellet Mill

- The belt tightness ought to be checked regularly. If it is now slack, it needs to be tightened immediately.

- The equipment should be situated in a nicely-ventilated area to ensure the temperature created by the motor can emit safely, to extend the lifespan of your machine.

- Before restarting the appliance, any remaining debris has to be cleared from the machine room to reduce starting resistance.

- Oil must be filled regularly to every bearing to market inter-lubricating.

- To ensure the cutter remains sharp, check this part regularly to prevent unnecessary damages for any other part.

- Regularly inspect the cutter screws, to make sure the bond involving the knife and blade remains strong.

- The machine should take a seat on an excellent foundation. Regular maintenance of your machine will prolong the complete lifespan of the machinery.

June, 12 2022
OPEC And The Current State of Oil Fundamentals

It was shaping up to yet another dull OPEC+ meeting. Cut and dry. Copy and paste. Rubber-stamping yet another monthly increase in production quotas by 432,000 b/d. Month after month of resisting pressure from the largest economies in the world to accelerate supply easing had inured markets to expectations of swift action by OPEC and its wider brethren in OPEC+.

And then, just two days before the meeting, chatter began that suggested something big was brewing. Whispers that Russia could be suspended made the rounds, an about-face for a group that has steadfastly avoided reference to the war in Ukraine, calling it a matter of politics not markets. If Russia was indeed removed from the production quotas, that would allow other OPEC+ producers to fill in the gap in volumes constrained internationally due to sanctions.

That didn’t happen. In fact, OPEC+ Joint Technical Committee commented that suspension of Russia’s quota was not discussed at all and not on the table. Instead, the JTC reduced its global oil demand forecast for 2022 by 200,000 b/d, expecting global oil demand to grow by 3.4 mmb/d this year instead with the downside being volatility linked to ‘geopolitical situations and Covid developments.’ Ordinarily, that would be a sign for OPEC+ to hold to its usual supply easing schedule. After all, the group has been claiming that oil markets have ‘been in balance’ for much of the first five months of 2022. Instead, the group surprised traders by announcing an increase in its monthly oil supply hike for July and August, adding 648,000 b/d each month for a 50% rise from the previous baseline.

The increase will be divided proportionally across OPEC+, as has been since the landmark supply deal in spring 2020. Crucially this includes Russia, where the new quota will be a paper one, since Western sanctions means that any additional Russian crude is unlikely to make it to the market. And that too goes for other members that haven’t even met their previous lower quotas, including Iraq, Angola and Nigeria. The oil ministers know this and the market knows this. Which is why the surprise announcement didn’t budge crude prices by very much at all.

In fact, there are only two countries within OPEC+ that have enough spare capacity to be ramped up quickly. The United Arab Emirates, which was responsible for recent turmoil within the group by arguing for higher quotas should be happy. But it will be a measure of backtracking for the only other country in that position, Saudi Arabia. After publicly stating that it had ‘done all it can for the oil market’ and blaming a lack of refining capacity for high fuel prices, the Kingdom’s change of heart seems to be linked to some external pressure. But it could seemingly resist no more. But that spotlight on the UAE and Saudi Arabia will allow both to wrench some market share, as both countries have been long preparing to increase their production. Abu Dhabi recently made three sizable onshore oil discoveries at Bu Hasa, Onshore Block 3 and the Al Dhafra Petroleum Concession, that adds some 650 million barrels to its reserves, which would help lift the ceiling for oil production from 4 to 5 mmb/d by 2030. Meanwhile, Saudi Aramco is expected to contract over 30 offshore rigs in 2022 alone, targeting the Marjan and Zuluf fields to increase production from 12 to 13 mmb/d by 2027.

The UAE wants to ramp up, certainly. But does Saudi Arabia too? As the dominant power of OPEC, what Saudi Arabia wants it usually gets. The signals all along were that the Kingdom wanted to remain prudent. It is not that it cannot, there is about a million barrels per day of extra production capacity that Saudi Arabia can open up immediately but that it does not want to. Bringing those extra volume on means that spare capacity drops down to critical levels, eliminating options if extra crises emerge. One is already starting up again in Libya, where internal political discord for years has led to an on-off, stop-start rhythm in Libyan crude. If Saudi Arabia uses up all its spare capacity, oil prices could jump even higher if new emergencies emerge with no avenue to tackle them. That the Saudis have given in (slightly) must mean that political pressure is heating up. That the announcement was made at the OPEC+ meeting and not a summit between US and Saudi leaders must mean that a façade of independence must be maintained around the crucial decisions to raise supply quotas.

But that increase is not going to be enough, especially with Russia’s absence. Markets largely shrugged off the announcement, keeping Brent crude at US$120/b levels. Consumption is booming, as the world rushes to enjoy its first summer with a high degree of freedom since Covid-19 hit. Which is why global leaders are looking at other ways to tackle high energy prices and mitigate soaring inflation. In Germany, low-priced monthly public transport are intended to wean drivers off cars. In the UK, a windfall tax on energy companies should yield US$6 billion to be used for insulating consumers. And in the US, Joe Biden has been busy.

With the Permian Basin focusing on fiscal prudence instead of wanton drilling, US shale output has not responded to lucrative oil prices that way it used to. American rig counts are only inching up, with some shale basins even losing rigs. So the White House is trying more creative ways. Though the suggestion of an ‘oil consumer cartel’ as an analogue to OPEC by Italian Prime Minister Mario Draghi is likely dead on arrival, the US is looking to unlock supply and tame fuel prices through other ways. Regular releases from the US Strategic Petroleum Reserve has so far done little to bring prices down, but easing sanctions on Venezuelan crude that could be exported to the US and Europe, as well as working with the refining industry to restart recently idled refineries could. Inflation levels above 8% and gasoline prices at all-time highs could lead to a bloody outcome in this year’s midterm elections, and Joe Biden knows that.

But oil (and natural gas) supply/demand dynamics cannot truly start returning to normal as long as the war in Ukraine rages on. And the far-ranging sanctions impacting Russian energy exports will take even longer to be lifted depending on how the war goes. Yes, some Russian crude is making it to the market. China, for example, has been quietly refilling its petroleum reserves with Russian crude (at a discount, of course). India continues to buy from Moscow, as are smaller nations like Sri Lanka where an economic crisis limits options. Selling the crude is one thing, transporting it is another. With most international insurers blacklisting Russian shippers, Russian oil producers can still turn to local insurance and tankers from the once-derided state tanker firm Sovcomflot PJSC to deliver crude to the few customers they still have.

A 50% hike in OPEC’s monthly supply easing targets might seem like a lot. But it isn’t enough. Especially since actual production will fall short of that quota. The entire OPEC system, and the illusion of control it provides has broken down. Russian oil is still trickling out to global buyers but even if it returned in full, there is still not enough refining capacity to absorb those volumes. Doctors speak of long Covid symptoms in patients, and the world energy complex is experiencing long Covid, now with a touch with geopolitical germs as well. It’ll take a long time to recover, so brace yourselves.

End of Article

Get timely updates about latest developments in oil & gas delivered to your inbox. Join our email list and get your targeted content regularly for free or follow-us on LinkedIn.

No alt text provided for this image

Learn more about this training course

June, 12 2022