NrgEdge Editor

Sharing content and articles for users
Last Updated: October 24, 2017
1 view
Renewable Energy
image

Variability surrounding future battery technology, government policies, consumer preferences, and other developments related to personal transportation markets casts a great deal of uncertainty on the long-term effects that battery electric and plug-in hybrid vehicles may have on worldwide energy consumption. This article discusses market trends related to these plug-in electric vehicles (PEVs) and compares results from standalone runs of EIA’s new International Transportation Energy Demand Determinates model [1] to those presented in the International Energy Outlook 2017 (IEO2017). These results help quantify some of the uncertainty associated with the long-term effects that PEVs may have on energy markets.


Even though the future penetration of PEVs into personal automobile markets may be heavily influenced by changes in technology and government policies, the side cases presented in this article are based on differences in consumer tastes and preferences. This approach is the easiest way to examine the effects that different penetration rates have on energy consumption because the methodology does not require us to develop a detailed set of new policies across countries or new assumptions related to technological progress.


The side cases consist of a Low and a High PEV Penetration case. In the Low PEV Penetration case, consumer preferences are set to result in an almost 50% smaller stock of plug-in electric vehicles in 2040 than in the Reference case. In the High PEV Penetration case, preferences are set to create nearly twice as large a stock of plug-in electric vehicles at the end of the projection period than at the end of the Reference case projection period.


The side cases show that different rates of PEV penetration have measurable effects on liquid fuel consumption in the transportation sector. In the Low PEV Penetration case, liquid fuel consumption is almost 2 quadrillion British thermal units (Btu) higher than the 225 quadrillion Btu level in the Reference case in 2040. In the High PEV Penetration case, consumption of these fuels is 2.75 quadrillion Btu lower than in the Reference case at the end of the projection period.


Even though the range of results might be smaller than initially expected, there are two important factors to understand. First, the use of PEVs in transportation starts from a small base. Although cumulative sales of PEVs worldwide reached 1.2 million in 2015, they still accounted for less than 1% of the total number of automobiles currently in use. Second, the side cases only address changes in adoption of PEVs in the light-duty vehicle sector and do not address PEVs in the two-and-three wheeler sector or in buses. The focus is on the light-duty vehicle sector because globally, light-duty vehicles consume more energy than any other mode of transportation, and most of the PEV policies are for light-duty vehicles. However, in all three cases, light-duty vehicles account for about 40% of total liquid fuel consumption in the transportation sector over the entire projection period.


In addition, the side cases do not consider variation in developments that are more closely tied to the growing digital economy in many countries, including ridesharing, carpool facilitation, and autonomous vehicles. Possible developments in these other transportation-related areas also cast a great deal of uncertainty on future transportation energy demand and could amplify or dampen the effects that PEVs have on energy consumption over the projection horizon.


DISCUSSION


Decreases in battery cell and pack costs and government incentives in many countries have been factors as helping PEVs reach their current level of market penetration. However, many uncertainties related to future government policies and other market-related developments remain.


Policy trends


Governments in many countries—including China, France, Germany, India, Italy, Japan, Norway, South Korea, Spain, Sweden, the United Kingdom, and the United States—have enacted policies encouraging PEV sales. These policies range from direct monetary incentives to time-saving measures. The monetary incentives include rebates at the time of purchase, tax exemptions, toll waivers, free parking, and exemptions from ferry fees. The time-saving measures include granting PEVs access to high-occupancy vehicle or bus lanes. The desire to reduce on-road vehicle emissions, including greenhouse gases and other pollutants, is often cited as the primary motivation for these incentives.


The Norwegian government offers the largest monetary incentives for PEVs. These incentives reduce the purchase price and the operational costs associated with PEV ownership and include an exemption from an acquisition tax ($11,600 savings) for both battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs). They also include an exemption from the countrywide 25% value-added tax for BEVs. Collectively, these incentives make the price of a luxury battery electric vehicle roughly equivalent to that of a non-luxury petroleum-fueled vehicle in that country. In addition to these cost savings, PEVs in Norway also receive waivers to avoid paying toll road and ferry fees.


In 2016, slightly more than 19% of new vehicles sales in Norway were plug-in electric vehicles (Figure IF-1). Because the country offered greater incentives for PHEVs in 2016 than in previous years, sales of PHEVs grew faster than sales of BEVs during the year. As a result, PHEVs accounted for 41%[2] of the total PEV purchases by Norwegian consumers.


Governments in several countries have started to remove or phase out existing policies that encourage the purchase of PEVs. In countries where this has happened, immediate and significant reductions in PEVs sales have been seen—for example, when Denmark’s government removed its PEV subsidies in 2016, the country saw a 71% decrease in BEV sales and a 49% decrease in PHEV sales compared with sales in the previous year.[3] Moving forward, the hope of many governments is that manufacturing costs will come down quickly enough to make PEVs more competitive in automobile markets, leading to increased sales.

fig_if1-1.png

figure data


More recently, governments in several countries have proposed policies that would discourage or prohibit the use or sale of non-electric vehicles in future years. The Norwegian government hopes to end the sale of petroleum-fueled vehicles by 2025. India’s government announced that by 2030 only electric vehicles will be sold in India. The governments of France and the United Kingdom have stated that they will ban the sale of internal combustion engine vehicles by 2040.


Market developments


A number of market-related factors can affect the demand for PEVs, but the factors most commonly focused on are differences in the purchase prices and operational costs between plug-in and a gasoline-fueled vehicles. Although such measures are informative, other less tangible or difficult-to-measure costs are also important factors that affect adoption rates. These less tangible costs relate to whether the vehicles serve as perfect substitutes or not, given current technology and supporting infrastructure. In addition, income levels and a more general notion of consumer tastes and preferences are likely to influence the demand for PEVs as well.


To compare the relative costs associated with the two different types of vehicles, measures of vehicle price parity are commonly used. The idea behind these measures is that once the price of PEVs begins to approach the price of gasoline-fueled vehicles, consumers will become more willing to purchase PEVs rather than gasoline-fueled vehicles because it makes sense to do so financially.


Two methods are typically used to create measures to examine vehicle price parity. The first is based on total cost of ownership (TCO). Under this concept, parity is achieved when ownership costs are the same for two types of vehicle measured over their service lives. Factors such as fuel cost per mile, maintenance, and length of ownership factor prominently into these types of measures. Because the cost-per-mile and maintenance costs are typically lower for PEVs, TCO parity is usually achieved even though electric vehicles have a higher purchase price than gasoline vehicles.


The second measure of vehicle price parity is based on the purchase price of a comparable vehicle. Under this concept, price parity is reached when the upfront cost in purchasing a PEV without discounts or incentives is the same as that associated with an equivalent gasoline-fueled vehicle. To reach price parity with gasoline-fueled vehicles, battery packs for plug-in electric vehicles will likely need to decrease to about $100/kilowatt hour (kWh).


Customers in the more developed countries are more likely to purchase electric vehicles once TCO parity is achieved. This outcome results because consumers in less-developed countries who are purchasing a new vehicle for the first time are likely to face a greater financial burden in spending the additional money upfront to purchase a PEV.


The main factor that may contribute to future vehicle price parity is increasing economies of scale for vehicle powertrain components. As more batteries are produced, lower per-unit costs are realized because fixed overhead and development costs are spread across a greater number of units. However, a large increase in battery demand may lead to bottlenecks in the supply chain for essential components, keeping PEV prices high, at least in the near term.


The most expensive component affecting the overall costs of PEV vehicles is the battery cell. The cost of lithium-ion cells, the most commonly used PEV battery, has decreased from about $1,000 per kWh of storage in 2010 to between $130/kWh – $200/kWh in 2016, depending on the manufacturer. However, the cost of the battery pack for most manufactures is still more than $200/kWh. Further reductions in cost will need to be realized to fully achieve vehicle price parity with gasoline vehicles.


A potential bottleneck in the supply chain could be caused by the need for lithium or cobalt to produce PEV batteries. Over the past few years, the cost of lithium has quadrupled as the demand for lithium has grown more quickly than supply. In the long run, however, lithium production is likely to be sufficient to support robust growth in the production of PEVs.


The price of cobalt has also doubled in the past couple years. However, long-run prospects for using this material in PEV batteries are not as strong as those for lithium. Cobalt is a scarcer resource with lower proven reserves. In addition, many of the known reserves exist in less politically stable regions of the world. The degree to which such supply chain bottlenecks could inhibit or delay the ability of electric vehicles to achieve price parity is uncertain.


Infrastructure to support the growth of PEV use needs to be further developed in many countries. For example, less than 80% of the population in India had access to electricity in 2014.[4] In addition, many of those with access to electricity, often do not have a reliable source or enough electricity to power more than few basic household appliances. To circumvent this issue and keep costs down, India plans to sell plug-in electric vehicles and lease the batteries to consumers. When the battery is empty, the consumer can swap out the battery for a fully charged battery at a station. Thus, consumers will not need individual access to a reliable source for electricity, as long as they have access to battery replacement stations.


In more-developed countries, access to charging stations still places limits on PEV adoption. With the current technology, it takes hours to fully charge an electric battery without using a high-speed charger. Even with such a charger, it still takes longer to charge a battery than to fill a tank with gasoline. Because of limited availability of high-speed chargers, consumers need to be able to charge their vehicles at their residences or places of work. However, many consumers do not have access to electrical outlets where they park their cars. As a result, many countries will need to install charging stations near residences.


Another important factor affecting PEV adoption is personal tastes and preferences. In China, the government offers the second-highest monetary incentives to promote the purchase of PEVs, but consumers have been more frequently opting for more-expensive gasoline-powered sport-utility vehicles (SUVs). In May 2017, SUV sales in China experienced 17% year-on-year growth, reaching 3.78 million vehicles sold year to date.[5] However, new energy vehicles, which include battery electric, plug-in hybrid electric, and fuel cell cars, experienced 7.8% year-on-year growth, reaching 136,000 vehicles sold year to date.


SIDE CASES


The side cases focus on how different levels of global PEV sales affect transportation energy consumption in both Organization of Economic Cooperation and Development (OECD) and non-OECD countries. To develop these cases, assumptions about consumer tastes and preferences were varied.


In the Low PEV Penetration case, consumers are less willing to pay the additional upfront cost for a PEV, resulting in fewer purchases than in the Reference case. This outcome results in less charging infrastructure being built and fewer makes and models of PEVs being developed. By 2040, the availability of fewer charging stations and fewer vehicle makes and models results in PEVs appearing even less attractive to consumers than in the Reference case.


In the High PEV Penetration case, consumers are more willing to pay the additional upfront cost for a PEV, resulting in more purchases than in the Reference case. This outcome results in more charging infrastructure being built and greater numbers of PEVs makes and models being developed for consumers. By 2040, the availability of more charging stations and more vehicle makes and models results in PEVs appearing even more attractive to consumers than in the Reference case.


In the Reference case, plug-in electric vehicles account for approximately 14% of the light-duty vehicle stock in 2040 (Figure IF-2). In the Low PEV Penetration case, plug-in electric vehicles account for 8% of the light-duty vehicle stock in that same year. In the High PEV Penetration case, plug-in electric vehicles account for 26% of the light-duty vehicle stock. In all three cases PEV sales as a percent of total new LDV sales increase quicker than PEV stocks as a percent of total stocks due to the large non-PEV stocks in many countries and LDV stock turnover rates.

fig_if1-2.png

figure data


In all three cases, plug-in electric vehicles in OECD countries make up a larger share of the light-duty vehicle stock than in non-OECD countries for at least three reasons (Figure IF-3):

  • More OECD countries have current policies supporting the adoption of PEVs. Even policies supporting PEV adoption in the near term have an effect on the stock of plug-in electric vehicles in 2040 because of the 25-year service life associated with these vehicles.
  • Higher incomes in OECD countries make it easier for consumers to purchase PEVs before plug-in electric vehicle price parity is achieved.
  • OECD countries have better electric grid reliability, making it less risky for consumers to own electric vehicles.

fig_if1-3.png

figure data


In the Reference case, most of global light-duty vehicle energy consumption comes from a petroleum-based fuel (motor gasoline, diesel, or liquefied petroleum gas (LPG)) throughout the projection period (Figure IF-4). However, the share of petroleum-based fuel for light-duty vehicle use decreases over time. In particular, petroleum-based fuels made up 98% of light-duty vehicle energy consumption in 2015. By 2040, petroleum-based fuels make up 90% of light-duty vehicle energy consumption. Electricity is the fastest growing energy source used to power these vehicles.


Total light-duty vehicle energy consumption increases from 48 quadrillion Btu in 2015 to 56 quadrillion Btu in the Reference case (Figure IF-4). OECD countries’ light-duty vehicle energy consumption decreases from 32 quadrillion Btu in 2015 to 25 quadrillion Btu in 2040. For these countries collectively, decreases in fuel consumption resulting from increased fuel economy standards more than offset increases resulting from increased light-duty vehicle travel. During the same period, non-OECD countries increase their light-duty vehicle energy consumption from 16 quadrillion Btu in 2015 to 31 quadrillion Btu in 2040. As a result, OECD countries’ decrease in light-duty vehicle energy consumption between 2015 and 2040 is more than offset by the increase in non-OECD light-duty vehicle energy consumption.

fig_if1-4.png

figure data


In the Low and High PEV Penetration cases, the different PEV penetration rates result in different levels of petroleum-based fuel, electricity, and natural gas consumption in the light-duty vehicle sector compared with the Reference case (Figure IF-5). In the Low PEV Penetration case, light-duty vehicles consume almost 2 quadrillion Btu more petroleum-based fuel in 2040 compared with the Reference case. In the High PEV Penetration case, light-duty vehicles consume almost 2.75 quadrillion Btu less petroleum-based fuel compared with the Reference case.


The differences in petroleum consumption in the two side cases do not result in a one-to-one change in energy consumption with natural gas and electricity because of the differences in efficiency between the vehicles. The battery portion of plug-in electric vehicles is more efficient than petroleum-fueled vehicles, which results in the use of fewer Btus of electricity to replace a given amount of Btus of petroleum-based fuel.

fig_if1-5.png

figure data


Differences in worldwide PEV penetration are projected to have measurable effects on total liquids consumption. In the Reference case, total worldwide liquids consumption reaches 225 quadrillion Btu in 2040 (Figure IF-6). Transportation liquids consumption as a percent of total liquids consumption remains relatively flat throughout the projection period at around 55%. Most of the change in total liquid fuel consumption comes from the 38 quadrillion Btu increase in non-OECD countries between 2015 and 2040.

fig_if1-6.png

figure data


In the Low PEV Penetration case, worldwide liquids consumption is almost 2 quadrillion Btu higher than in the Reference case, representing an additional 1%point increase in total liquids consumption in 2040 (Figure IF-7). The difference in total liquids consumption is larger for OECD countries than for non-OECD countries because OECD countries have more PEVs on-road in the Reference case. Total liquids consumption in OECD countries is almost 2% higher in the Low PEV Penetration case than in the Reference case.

fig_if1-7.png
figure data


In the High PEV Penetration case, worldwide liquids consumption is 2.75 quadrillion Btu lower than in the Reference case in 2040 (Figure IF-8). This difference in liquids consumption represents a 1% reduction in total liquids consumption in the High PEV Penetration case compared with the Reference case. Both OECD and non-OECD countries increase PEV adoption throughout the projection period, resulting in almost equal decreases in total liquids consumption in OECD and non-OECD countries.

fig_if1-8.png

3
0 0

Something interesting to share?
Join NrgEdge and create your own NrgBuzz today

Latest NrgBuzz

Brazil Needs a “Makeover” For Future Oil Bids

The year’s final upstream auctions were touted as a potential bonanza for Brazil, with pre-auction estimates suggesting that up to US$50 billion could be raised for some deliciously-promising blocks. The Financial Times expected it to be the ‘largest oil bidding round in history’. The previous auction – held in October – was a success, attracting attention from supermajors and new entrants, including Malaysia’s Petronas. Instead, the final two auctions in November were a complete flop, with only three of the nine major blocks awarded.

What happened? What happened to the appetite displayed by international players such as ExxonMobil, Shell, Chevron, Total and BP in October? The fields on offer are certainly tempting, located in the prolific pre-salt basin and including prized assets such as the Buzios, Itapu, Sepia and Atapu fields. Collectively, the fields could contain as much as 15 billion barrels of crude oil. Time-to-market is also shorter; much of the heavy work has already been done by Petrobras during the period where it was the only firm allowed to develop Brazil’s domestic pre-salt fields. But a series of corruption scandals and a new government has necessitated a widening of that ambition, by bringing in foreign expertise and, more crucially, foreign money. But the fields won’t come cheap. In addition to signing bonuses to be paid to the Brazilian state ranging from US$331 million to US$17 billion by field, compensation will need to be paid to Petrobras. The auction isn’t a traditional one,  but a Transfer of Rights sale covering existing in-development and producing fields.

And therein lies the problem. The massive upfront cost of entry comes at a time when crude oil prices are moderating and the future outlook of the market is uncertain, with risks of trade wars, economic downturns and a move towards clean energy. The fact that the compensation to be paid to Petrobras would be negotiated post-auction was another blow, as was the fact that the auction revolved around competing on the level of profit oil offered to the Brazilian government. Prior to the auction itself, this arrangement was criticised as overtly complicated and ‘awful’, with Petrobras still retaining the right of first refusal to operate any pre-salt fields A simple concession model was suggested as a better alternative, and the stunning rebuke by international oil firms at the auction is testament to that. The message is clear. If Brazil wants to open up for business, it needs to leave behind its legacy of nationalisation and protectionism centring around Petrobras. In an ironic twist, the only fields that were awarded went to Petrobras-led consortiums – essentially keeping it in the family.

There were signs that it was going to end up this way. ExxonMobil – so enthusiastic in the October auction – pulled out of partnering with Petrobras for Buzios, balking at the high price tag despite the field currently producing at 400,000 b/d. But the full-scale of the reticence revealed flaws in Brazil’s plans, with state officials admitting to being ‘stunned’ by the lack of participation. Comments seem to suggest that Brazil will now re-assess how it will offer the fields when they go up for sale again next year, promising to take into account the reasons that scared international majors off in the first place. Some US$17 billion was raised through the two days of auction – not an insignificant amount but a far cry from the US$50 billion expected. The oil is there. Enough oil to vault Brazil’s production from 3 mmb/d to 7 mmb/d by 2030. All Brazil needs to do now is create a better offer to tempt the interested parties.

Results of Brazil’s November upstream auctions:

  • 6 November: Four blocks on offer, two awarded (Buzios, 90% Petrobras 5% CNOOC 5% CNODC ; Itapu, 100% Petrobras)
  • 7 November: Five blocks on offer, one awarded (Aram, 80% Petrobras 20% CNOOC)
November, 14 2019
Short-Term Energy Outlook

Highlights  

Global liquid fuels

  • Brent crude oil spot prices averaged $60 per barrel (b) in October, down $3/b from September and down $21/b from October 2018. EIA forecasts Brent spot prices will average $60/b in 2020, down from a 2019 average of $64/b. EIA forecasts that West Texas Intermediate (WTI) prices will average $5.50/b less than Brent prices in 2020. EIA expects crude oil prices will be lower on average in 2020 than in 2019 because of forecast rising global oil inventories, particularly in the first half of next year.
  • Based on preliminary data and model estimates, EIA estimates that the United States exported 140,000 b/d more total crude oil and petroleum products in September than it imported; total exports exceeded imports by 550,000 b/d in October. If confirmed in survey-collected monthly data, it would be the first time the United States exported more petroleum than it imported since EIA records began in 1949. EIA expects total crude oil and petroleum net exports to average 750,000 b/d in 2020 compared with average net imports of 520,000 b/d in 2019.
  • Distillate fuel inventories (a category that includes home heating oil) in the U.S. East Coast—Petroleum Administration for Defense District (PADD 1)—totaled 36.6 million barrels at the end of October, which was 30% lower than the five-year (2014–18) average for the end of October. The declining inventories largely reflect low U.S. refinery runs during October and low distillate fuel imports to the East Coast. EIA does not forecast regional distillate prices, but low inventories could put upward pressure on East Coast distillate fuel prices, including home heating oil, in the coming weeks.
  • U.S. regular gasoline retail prices averaged $2.63 per gallon (gal) in October, up 3 cents/gal from September and 11 cents/gal higher than forecast in last month’s STEO. Average U.S. regular gasoline retail prices were higher than expected, in large part, because of ongoing issues from refinery outages in California. EIA forecasts that regular gasoline prices on the West Coast (PADD 5), a region that includes California, will fall as the issues begin to resolve. EIA expects that prices in the region will average $3.44/gal in November and $3.12/gal in December. For the U.S. national average, EIA expects regular gasoline retail prices to average $2.65/gal in November and fall to $2.50/gal in December. EIA forecasts that the annual average price in 2020 will be $2.62/gal.
  • Despite low distillate fuel inventories, EIA expects that average household expenditures for home heating oil will decrease this winter. This forecast largely reflects warmer temperatures than last winter for the entire October–March period, and retail heating oil prices are expected to be unchanged compared with last winter. For households that heat with propane, EIA forecasts that expenditures will fall by 15% from last winter because of milder temperatures and lower propane prices.


Natural gas

  • Natural gas storage injections in the United States outpaced the previous five-year (2014–18) average during the 2019 injection season as a result of rising natural gas production. At the beginning of April, when the injection season started, working inventories were 28% lower than the five-year average for the same period. By October 31, U.S. total working gas inventories reached 3,762 billion cubic feet (Bcf), which was 1% higher than the five-year average and 16% higher than a year ago.
  • EIA expects natural gas storage withdrawals to total 1.9 trillion cubic feet (Tcf) between the end of October and the end of March, which is less than the previous five-year average winter withdrawal. Withdrawal of this amount would leave end-of-March inventories at almost 1.9 Tcf, 9% higher than the five-year average.
  • The Henry Hub natural gas spot price averaged $2.33 per million British thermal units (MMBtu) in October, down 23 cents/MMBtu from September. The decline largely reflected strong inventory injections. However, forecast cold temperatures across much of the country caused prices to rise in early November, and EIA forecasts Henry Hub prices to average $2.73/MMBtu for the final two months of 2019. EIA forecasts Henry Hub spot prices to average $2.48/MMBtu in 2020, down 13 cents/MMBtu from the 2019 average. Lower forecast prices in 2020 reflect a decline in U.S. natural gas demand and slowing U.S. natural gas export growth, allowing inventories to remain higher than the five-year average during the year even as natural gas production growth is forecast to slow.
  • EIA forecasts that annual U.S. dry natural gas production will average 92.1 billion cubic feet per day (Bcf/d) in 2019, up 10% from 2018. EIA expects that natural gas production will grow much less in 2020 because of the lag between changes in price and changes in future drilling activity, with low prices in the third quarter of 2019 reducing natural gas-directed drilling in the first half of 2020. EIA forecasts natural gas production in 2020 will average 94.9 Bcf/d.
  • EIA expects U.S. liquefied natural gas (LNG) exports to average 4.7 Bcf/d in 2019 and 6.4 Bcf/d in 2020 as three new liquefaction projects come online. In 2019, three new liquefaction facilities—Cameron LNG, Freeport LNG, and Elba Island LNG—commissioned their first trains. Natural gas deliveries to LNG projects set a new record in July, averaging 6.0 Bcf/d, and increased further to 6.6 Bcf/d in October, when new trains at Cameron and Freeport began ramping up. Cameron LNG exported its first cargo in May, Corpus Christi LNG’s newly commissioned Train 2 in July, and Freeport in September. Elba Island plans to ship its first export cargo by the end of this year. In 2020, Cameron, Freeport, and Elba Island expect to place their remaining trains in service, bringing the total U.S. LNG export capacity to 8.9 Bcf/d by the end of the year.


Electricity, coal, renewables, and emissions

  • EIA expects the share of U.S. total utility-scale electricity generation from natural gas-fired power plants will rise from 34% in 2018 to 37% in 2019 and to 38% in 2020. EIA forecasts the share of U.S. electric generation from coal to average 25% in 2019 and 22% in 2020, down from 28% in 2018. EIA’s forecast nuclear share of U.S. generation remains at about 20% in 2019 and in 2020. Hydropower averages a 7% share of total U.S. generation in the forecast for 2019 and 2020, down from almost 8% in 2018. Wind, solar, and other nonhydropower renewables provided 9% of U.S. total utility-scale generation in 2018. EIA expects they will provide 10% in 2019 and 12% in 2020.
  • EIA expects total U.S. coal production in 2019 to total 698 million short tons (MMst), an 8% decrease from the 2018 level of 756 MMst. The decline reflects lower demand for coal in the U.S. electric power sector and reduced competitiveness of U.S. exports in the global market. EIA expects U.S. steam coal exports to face increasing competition from Eastern European sources, and that Russia will fill a growing share of steam coal trade, causing U.S. coal exports to fall in 2020. EIA forecasts that coal production in 2020 will total 607 MMst.
  • EIA expects U.S. electric power sector generation from renewables other than hydropower—principally wind and solar—to grow from 408 billion kilowatthours (kWh) in 2019 to 466 billion kWh in 2020. In EIA’s forecast, Texas accounts for 19% of the U.S. nonhydropower renewables generation in 2019 and 22% in 2020. California’s forecast share of nonhydropower renewables generation falls from 15% in 2019 to 14% in 2020. EIA expects that the Midwest and Central power regions will see shares in the 16% to 18% range for 2019 and 2020.
  • EIA forecasts that, after rising by 2.7% in 2018, U.S. energy-related carbon dioxide (CO2) emissions will decline by 1.7% in 2019 and by 2.0% in 2020, partially as a result of lower forecast energy consumption. In 2019, EIA forecasts less demand for space cooling because of cooler summer months; an expected 5% decline in cooling degree days from 2018, when it was significantly higher than the previous 10-year (2008–17) average. In addition, EIA also expects U.S. CO2 emissions in 2019 to decline because the forecast share of electricity generated from natural gas and renewables will increase, and the share generated from coal, which is a more carbon-intensive energy source, will decrease.
November, 14 2019
The U.S. placed near-record volumes of natural gas in storage this injection season

The amount of natural gas held in storage in 2019 went from a relatively low value of 1,155 billion cubic feet (Bcf) at the beginning of April to 3,724 Bcf at the end of October because of near-record injection activity during the natural gas injection, or refill, season (April 1–October 31). Inventories as of October 31 were 37 Bcf higher than the previous five-year end-of-October average, according to interpolated values in the U.S. Energy Information Administration’s (EIA) Weekly Natural Gas Storage Report.

Although the end of the natural gas storage injection season is traditionally defined as October 31, injections often occur in November. Working natural gas stocks ended the previous heating season at 1,155 Bcf on March 31, 2019—the second-lowest level for that time of year since 2004. The 2019 injection season included several weeks with relatively high injections: weekly changes exceeded 100 Bcf nine times in 2019. Certain weeks in April, June, and September were the highest weekly net injections in those months since at least 2010.

weekly net changes in natural gas storage

Source: U.S. Energy Information Administration, Weekly Natural Gas Storage Report

From April 1 through October 31, 2019, more than 2,569 Bcf of natural gas was placed into storage in the Lower 48 states. This volume was the second-highest net injected volume for the injection season, falling short of the record 2,727 Bcf injected during the 2014 injection season. In 2014, a particularly cold winter left natural gas inventories in the Lower 48 states at 837 Bcf—the lowest level for that time of year since 2003.

November, 11 2019