NrgEdge Editor

Sharing content and articles for users
Last Updated: October 27, 2017
1 view
Business Trends
image

Overview

South Africa has a large energy-intensive coal mining industry. The country has limited proved reserves of oil and natural gas and uses its large coal deposits to meet most of its energy needs, particularly in the electricity sector. South Africa also has a sophisticated synthetic fuels industry, producing gasoline and diesel fuels from the Secunda coal-to-liquids and Mossel Bay gas-to-liquids plants.

South Africa's energy sector is critical to its economy, as the country relies heavily on its large-scale, energy-intensive coal mining industry. South Africa has limited proved reserves of oil and natural gas and uses its large coal deposits to meet most of its energy needs, particularly in the electricity sector. Most of the oil consumed in the country, used mainly in the transportation sector, is imported from Middle Eastern and West African producers in the Organization of the Petroleum Exporting Countries (OPEC) and is locally refined. South Africa also has a sophisticated synthetic fuels industry, producing gasoline and diesel fuels from the Secunda coal-to-liquids (CTL) plant and the Mossel Bay gas-to-liquids (GTL) plant. The synthetic fuels industry accounts for nearly all of the country's domestically produced petroleum because crude oil production is very small.

South Africa’s economy has grown rapidly since the end of the apartheid era in 1994, and the country is now one of the most developed nations in Africa. South Africa has the second-largest economy in Africa, in terms of gross domestic product (GDP), and it has the highest energy consumption on the continent, accounting for about 28% of total primary energy consumption in Africa, according to BP Statistical Review of World Energy 2017.[1] Despite rapid economic growth over the past few decades, economic problems from the apartheid era remain, particularly poverty and the lack of economic participation among disadvantaged groups. The South African government has committed to ensuring that black-owned companies have access to energy and mining sector activities under its Black Economic Empowerment (BEE) program. In addition, the 2000 Petroleum and Liquid Fuels Chartersets a target to place 25% of the oil industry (across all facets) in the hands of black-controlled energy companies.

According to a 2015 study by the U.S. Energy Information Administration (EIA), South Africa holds the eighth-largest technically recoverable shale gas resources in the world (390 trillion cubic feet) primarily located in the Karoo basin. The South African government hopes that shale gas will provide the country with a reliable alternative fuel to coal. However, regulatory uncertainty and environmental concerns have delayed exploration. Some progress was recently made when the Petroleum Agency South Africa (PASA) announced that it would start processing existing applications for exploration permits in late 2017.[2]

In 2016, 70% of South Africa's total primary energy consumption came from coal, followed by oil (22%), natural gas (4%), nuclear (3%), and renewables (less than 2%), according to BP Statistical Review of World Energy 2017 (Figure 2).[3] South Africa's dependence on coal has led the country to become the leading carbon dioxide emitter, on a volumetric basis, in Africa (accounting for 35% of emissions in Africa) and the 14th-largest emitter in the world, according to the latest BP Statistical Review estimates.[4]

Figure 1. Map of South Africa

Map of South africa

Source: U.S. Department of State

Figure 2. Total primary energy consumption in South Africa, 2016

Energy sector management

PetroSA, a South African state-owned company, operates upstream oil and natural gas producing assets in South Africa, along with the GTL plant in Mossel Bay. Sasol, a privately owned company based in South Africa, operates the Secunda CTL plant, has a majority interest in the Natref oil refinery, partially owns the pipeline transporting natural gas from Mozambique to South Africa, and is involved in coal mining.

Regulatory organizations

South Africa has several government agencies and companies involved in the coal, natural gas, and oil sectors. The Petroleum Agency of South Africa (PASA) regulates oil and natural gas exploration and production and provides public data on those activities. The National Energy Regulator of South Africa (NERSA) regulates the electricity sector, natural gas pipeline industries, and petroleum pipeline industries. NERSA regulates electricity prices and promotes private sector participation by encouraging investment by independent power producers (IPPs) and off-grid technologies to meet rural energy needs. Eskom—the state-owned electricity company—generates about 90% of South Africa's electricity and owns and operates the national electricity grid.[5]

Major companies

South Africa's upstream oil and natural gas sectors are dominated by the state-owned company Petroleum Oil and Gas Corporation of South Africa (PetroSA), while the downstream oil sector is more diversified and includes companies from Europe, North America, and Asia. BP, Shell, Chevron, Total, and Engen are the main players in the downstream oil and petrochemical industry. PetroSA operates all upstream oil- and natural gas-producing assets in South Africa, along with the GTL plant at Mossel Bay. The company also participates in oil and natural gas activities internationally.

Sasol is another major player in South Africa's energy industry and operates Secunda, one of the world's largest coal-based synthetic fuels plant. The company holds majority interest in the 88,000 barrels per day (b/d) Natref refinery. Sasol is also involved in coal mining and marketing of natural gas and oil products. According to Sasol, the company mines 40 million metric tons (MMt) of marketable coal per year (mostly used at the Secunda CTL plant) and exports about 2.8 MMt per year. Sasol distributes and markets natural gas produced in Mozambique that is exported to South Africa via a pipeline partially owned by Sasol.[6]

Sasol has operations around the world, ranging from supplying petrochemicals to using its proprietary Fischer-Tropsch conversion technology to pursue opportunities to open GTL plants. Sasol has a 49% stake in Qatar’s Oryx GTL plant (Qatar Petroleum owns 51%) that came online in 2007. Sasol also has GTL projects in Nigeria and Uzbekistan. Sasol is also considering developing a GTL plant at Lake Charles, Louisiana, in the United States and a GTL plant in Alberta, Canada, although both projects are now on hold as a result of recent low oil prices.[7]

Major companies that participate is South Africa’s coal sector include Anglo American, BHP Billton, and Xstrata Coal. The South African-based, majority black-owned coal company Exxaro also ranks among the top producers. Coal mining in South Africa is mainly undertaken by privately owned companies, and the shareholders of Richards Bay, the country’s main coal port, are all private companies as well. The state-owned company Transnet controls the railways used to transport coal from the mines to the ports.

Coal

South Africa has the world's tenth-largest amount of recoverable coal reserves and holds 75% of Africa's total coal reserves. Coal consumption in South Africa is expected to continue to increase as new coal-fired power stations are scheduled to come online to meet rising demand for electricity.

South African proved coal reserves were estimated at 11 billion short tons at the end of 2016, the 10th-largest in the world, according to the BP Statistical Review of World Energy 2017. South Africa’s coal reserves accounted for 75% of those in Africa and 1% of total world reserves.[8]

South Africa's economy is heavily dependent on coal, as it accounts for about 70% of the country’s total primary energy consumption (Figure 2). The electricity sector accounts for more than half of the coal consumed in South Africa, followed by Sasol’s petrochemical industries, metallurgical industries, and domestic heating and cooking, according to Eskom.[9]

South Africa’s coal production and consumption levels have remained relatively stable over the past decade. In 2016, the country produced an estimated 277 million short tons (MMst) and consumed 191 MMst of coal (Figure 3).[10] Most of the coal produced comes from the Witbank, Highveld, and Ermelo coal fields, which are located in the eastern part of the country near Swaziland. South Africa has the potential to increase coal production, particularly from the resource-rich Waterberg basin in the northeastern area of the country. One of the main bottlenecks to increasing coal exports is the lack of railway infrastructure used to transport coal from the inland mines to the ports. Transnet, South Africa’s railway operator, is investing billions of dollars to expand railway infrastructure over the next few years. Several railway projects are slated to be commissioned by 2021, which should facilitate transporting coal to export facilities and demand centers within South Africa.[11] However, weaker global coal demand, lower international coal prices over the past few years, and some regulatory uncertainties have delayed investments in these mine projects.[12]

Some of South Africa’s mining projects are allocated to domestic electricity generation versus coal exports. South Africa’s electricity consumption is increasing, and coal production will be needed to fuel new power plants that are currently under construction. Coal use—especially by Eskom and Sasol—is expected to rise over the next few years.[13] Eskom is expanding its coal-fired electricity capacity to meet growing demand by bringing online coal-fired power plants—Medupi (4,764 megawatts (MW) and Kusile (4,800 MW)—in stages by 2022. Two units of the Medupi power plant and the first unit of the Kusile plant (collectively 2,388 MW of capacity) were operational by September 2017.[14] However, coal consumption in the power sector is expected to face competition from natural gas and renewable energy in the next few years.

Figure 3. Total primary coal production and consumption in South Africa

Coal-to-liquids (CTL)

South Africa produces synthetic fuels from low-grade coal and a small amount from natural gas. At the Sasol synfuels plant in Secunda, more than 37 MMst of coal each year are converted into liquid fuels and a range of chemical feedstock. The plant houses two factories with a total capacity of 160,000 b/d of oil equivalent.[15} Sasol proposed an expansion of Secunda's capacity and construction of another CTL facility, although these projects have been postponed until it has a provision for carbon capture at these facilities.[16]

Exports

South Africa exports about 30% of its coal production and is the fifth-largest global coal exporter. Most of South Africa’s coal exports are sent to Asia, with India being the largest recipient.

South Africa exported about 30% of its coal production (85 MMst in 2016), making it the world’s fifth-largest global coal exporter. Asia received nearly two-thirds of South Africa’s coal shipments, with the largest destination being India, which accounted for nearly half of South Africa’s coal exports (Figure 4).[17] Europe is the second-largest regional importer of South Africa’s coal, followed by the rest of Africa, the Middle East, and the Americas. South African exports have shifted to India and South Asia and away from Europe and China over the past several years.

About 95% of South Africa’s coal is exported via the Richards Bay Coal Terminal (RBCT), and the remainder is exported via the Maputo and Durban terminals.[18] RBCT is located on the eastern coast of South Africa and is one of the world's largest coal export terminals. It began operation with a design capacity of 13 MMst per year in 1976, and it has since gone through several capacity expansions, increasing the export terminal's design capacity to its current level of 100 MMst per year.[19] There are proposals to expand RBCT’s capacity to 121 MMst per year. These plans have been delayed because the terminal still operates below its capacity as a result of inadequate rail capacity needed to transport coal produced at inland coal fields to the RBCT.[20] However, progress has been made over the past few years to increase the terminal’s throughput volumes. In 2015, the RBCT exported more than 83 MMst of coal for the first time before declining to 80 MMst in 2016 (Table 1). Even though exports to Asia and Africa rose in 2016, coal shipments to Europe were weak in 2016, driving down overall exports from RBCT.[21]

Table 1. Richards Bay coal terminal shipping statisticsmillion metric tonsYearCoal shipped201172.2201275.3201377.4201478.6201583.1201680.0Source: Richards Bay Coal Terminal, Reuters

Figure 4. South Africa's coal exports, by destination, 2016

Natural gas

South Africa imports natural gas from Mozambique via pipeline to supply Sasol's Secunda synfuel plant and to fuel natural gas-fired power plants. South Africa produces a small volume of natural gas offshore, which is mainly used to supply the Mossel Bay GTL plant.

In 2016, South Africa produced about 40 billion cubic feet (Bcf) of dry natural gas and consumed nearly 180 Bcf; the difference of 140 Bcf was imported from Mozambique via pipeline (Figure 5). South Africa has very limited proved natural gas reserves but potentially large shale gas resources. Most of South Africa’s natural gas is produced from the maturing offshore F-A field and South Coast Complex fields and sent to the GTL facility in Mossel Bay via an offshore pipeline.

PetroSA intended to develop the F-O field, also known as Project Ikhwezi, to sustain natural gas supplies to the GTL facility, although field reserves and production potential have been severely overestimated by the state company.[22] The company plans to tap into nearby prospective areas, such as the E-BK Project, to continue natural gas flows to the GTL plant.[23] One of the most viable opportunities for offshore field development is the Ibhubesi natural gas field, owned by a joint venture of the South African firms Sunbird (the field operator) and PetroSA. The Ibhubesi field holds at least 540 Bcf of recoverable reserves. The field developers aim to finalize a natural gas supply agreement with South Africa’s state-owned electricity firm, Eskom, in 2017 and to begin production by 2020 to replace some of the country’s diesel-fired power.[24] Sunbird received the environmental authorization for the Ibhubesi natural gas project in August 2017.[25]

The government aims for new natural gas production from offshore conventional fields, onshore shale gas developments, regional imports from Mozambique, and potential liquefied natural gas (LNG) imports to reduce the country's reliance on coal in the electricity and industrial sector in the long term. Currently, infrastructure constraints limit the role of natural gas in the country's electricity sector.

South Africa created a new natural gas plan that includes constructing several natural gas-fired power plants and at least two LNG regasification terminals by 2025. South Africa’s Department of Energy has proposed building nearly 290 Bcf/y of capacity from two floating LNG import terminals on the eastern side at Richards Bay and the southeastern coast at Port Coega. South Africa reported that it plans to move forward with the bidding process for the facilities in late 2017 and to begin importing LNG by 2020. PetroSA has also considered building a floating regasification facility to supply the Mossel Bay GTL plant in the future.[26]

Figure 5. South Africa's natural gas production and consumption

Shale gas resources

EIA estimates that South Africa holds 390 trillion cubic feet of technically recoverable shale gas resources. Environmental concerns led the government to place a moratorium on shale gas exploration from April 2011 to September 2012. Recently, South Africa’s government has started to process pending applications for shale exploration permits.

According to a June 2013 report released by EIA, South Africa has 390 trillion cubic feet (Tcf) of technically recoverable shale gas resources, making the country the eighth-largest holder of technically recoverable shale gas resources in the world. Technically recoverable resources represent the volumes of oil and natural gas that could be produced with current technology, regardless of oil and natural gas prices and production costs.[27]

South Africa’s shale gas resources are located in the Karoo basin in the Whitehill (211 Tcf), Prince Albert (96 Tcf), and Collingham (82 Tcf) formations. EIA lowered its estimate from 485 Tcf to 390 Tcf in the most recent report because the prospective area for the three shale formations in the Karoo basin was reduced by 15%. The Whitehill Shale’s recovery rate and resource estimates were also reduced because of the geologic complexity, according to the report.

Environmental concerns regarding water usage and hydraulic fracturing, one of the processes used to facilitate the extraction of shale gas, led the government to enact a moratorium in April 2011 on issuing exploration licenses for shale gas exploration. The moratorium was lifted in September 2012 after a government-funded study recommended that it was safe to continue shale gas exploration. In June 2015, South Africa’s Minister of Mineral Resources enacted technical regulations to govern petroleum exploration, particularly standards for shale gas exploration and hydraulic fracturing. These regulations balance the economic opportunity of shale gas development to improve the country’s energy security against environmental concerns.[28] South Africa approved shale gas development in the Karoo basin in early 2017. However, the government’s regulations were contested and declared invalid by the Eastern Cape’s High Court.[30] Petroleum Agency South Africa (PASA) had announced it would start processing existing applications for exploration permits in late 2017, although drilling for shale gas could face delays.[31]

Gas-to-liquids (GTL)

The GTL plant at Mossel Bay was commissioned in 1992 and is one of the largest in the world. PetroSA operates the plant, in addition to the offshore gas fields that provide the fuel. The plant has the capacity to process 45,000 b/d of liquid fuels through a Fischer-Tropsch Process, where natural gas is converted to synthetic liquid fuels. The plant produces several synthetic liquid fuels, of which more than half is unleaded petrol (motor gasoline) and the remainder includes: paraffin (kerosene), diesel, propane, liquid oxygen and nitrogen, distillates, eco-fuels, process oils, and alcohols.[32]

The Mossel Bay GTL refinery has operated well below its nameplate capacity for several years and produced less than 22,000 b/d in 2016 because of insufficient natural gas supplies.[33] As a medium-term solution to keeping the GTL plant operating, PetroSA installed a condensate splitter in 2016 and can process about 18,000 b/d of heavy liquid condensates in addition to natural gas.[34]

Natural gas pipelines

Natural gas from Mozambique is imported through a 535-mile pipeline and transported to Sasol's Secunda synfuels plant. Sasol, the South African government, and the government of Mozambique own the pipeline through a joint venture, ROMPCO (the Republic of Mozambique Pipeline Investments Company).[35] The pipeline has a peak capacity of 550 million cubic feet per day of natural gas and was part of a $1.2 billion natural gas project started in 2004.[36] The pipeline has expanded its capacity in recent years to accommodate growing natural gas markets in both Mozambique and South Africa.

Two proposals are pending for a natural gas pipeline that would run from Mozambique’s Rovuma basin in its northeastern province Cabo Delgado to demand centers in South Africa. SacOil Holdings, a South Africa-based oil and natural gas company; the Mozambican national oil company; a consortium of Mozambican private sector companies; and China National Petroleum Corporation’s (CNPC’s) subsidiary, China Petroleum Pipeline Bureau (CPP), signed a cooperation agreement in March 2016 and are studying the possibility of constructing the $6 billion, 1,615-mile African Renaissance Pipeline. CPP would provide 70% of the funding from Chinese financial firms. The second project is the Gasnosu Pipeline, proposed by the Mozambican state oil company and South African firm, Gigajoule, and supported by South African utility Eskom.[37] Several significant gas discoveries have been made in Mozambique’s northeastern Rovuma Basin over the past few years. South Africa is a viable market for Mozambique’s future production given South Africa’s limited proved gas reserves and its need to sustain production at its GTL plant. However, both proposed pipelines involve long distances and high capital costs, current LNG regasification proposals are likely to be more economically competitive in the near term.

Petroleum and other liquids

South Africa has small amounts of proved crude oil reserves, and the country’s crude oil production is very small. Synthetic fuels, derived from coal and natural gas, account for about 86% of the country's domestic petroleum liquids production.

According to the Oil & Gas Journal, South Africa has proved crude oil reserves of 15 million barrels.[38] All of the proved reserves are located offshore in southern South Africa in the Bredasdorp Basin and off the west coast of the country near the maritime border with Namibia. South Africa's petroleum and other liquids (total oil) production was about 134,000 barrels per day (b/d) in 2016 (Figure 6). Synthetic fuels, derived from coal and natural gas, accounted for about 86% of the country’s domestic petroleum supply. Less than 5,000 b/d of crude oil and lease condensate is produced at the Oribi and Oryz fields operated by PetroSA. The country's crude oil and lease condensate production continues to decline as oil fields mature and as no commercially viable discoveries have been made. Refining gains accounted for about 10% of domestic petroleum liquids supplies.

South Africa's deepwater offshore Orange Basin near Namibia is believed to hold substantial oil and natural gas resources, although limited exploration activity has occurred in the area. In 2009, Shell acquired exploration rights over a large block in the basin. Shell obtained an environmental authorization for exploration drilling in 2015. However, the company is years away from potentially producing any commercial reserves.[39]

Figure 6. Petroleum and other liquids production and consumption in South Africa

Downstream

South Africa consumes the second-largest amount of petroleum in Africa, behind Egypt. The petroleum consumed in South Africa comes mostly from its domestic refineries that import crude oil and its CTL and GTL plants. South Africa imports crude oil mostly from OPEC countries in the Middle East and West Africa.

EIA estimates that South Africa’s petroleum consumption was 691,000 b/d in 2016. The petroleum products consumed in South Africa come mostly from its domestic refineries that import crude oil and its CTL and GTL plants. The country also imports an increasing amount of petroleum products because overall oil consumption continues to rise. In 2016, South Africa imported an estimated 155,000 b/d of petroleum products, mostly from Asia and the Middle East, according to Global Trade Tracker (GTT).[40]

The South African government is considering a policy to encourage greater use of liquefied petroleum gas (LPG) in the residential, commercial, and industrial sectors to diversify fuel sources and provide low-income households with more affordable and cleaner-burning fuels.[41] A few LPG processing and storage facilities are set to come online in Saldanha Bay and Richards Bay during the next few years to meet the country’s rising demand for this product.[42]

Refining

South Africa has the second-largest crude oil distillation capacity in Africa at 493,000 b/d, surpassed only by Egypt, according to the OGJ January 2017 estimates (Table 2).[43] The government has proposed plans to implement new, tighter fuel standards that would require upgrades at all refineries. However, because of low returns on investment, refinery operators have yet to upgrade their facilities. The new fuel standards will raise refiners' operational costs. The government’s initial deadline to upgrade the refineries was July 2017, but this target has been delayed indefinitely.

South Africa imports oil products to make up for the country’s widening supply shortfall. South Africa’s Department of Energy and the South African Petroleum Industry Association (SAPIA) have been discussing a cost-recovery program for the refineries since 2015.[44]

PetroSA and Chinese national oil company, Sinopec, considered building a new refinery in 2012, but they canceled the project based on high capital cost. In March 2017, Sinopec announced that it plannned to purchase a 75% share in Chevron’s refinery in Cape Town. The Chinese national oil company was in discussions with the South African government, whose main concern is to continue operations and upgrade the refinery to meet the new fuel standards.[45] However, the minority stakeholder of Chevron’s downstream assets in South Africa prevented the acquisition deal from moving forward. Swiss—based oil trading company, Glencore, then decided to acquire these assets in October 2017, although the bid is under review.[46]

Crude oil imports

In 2016, South Africa imported 416,000 b/d of crude oil, according to GTT data. South Africa imports crude oil mostly from OPEC countries, namely Saudi Arabia (38%), Nigeria (29%), and Angola (19%) (Figure 7).

South Africa’s top oil supplier has shifted from Iran to Saudi Arabia in recent years. In 2011, Iran was South Africa’s largest crude oil supplier, accounting for about 27% of South Africa’s total crude oil imports.[47] But in 2012, South Africa's crude oil imports from Iran dropped because of U.S. and European Union (EU) sanctions against Iran. U.S. sanctions, directed toward foreign financial institutions that facilitate oil-related transactions with the Central Bank of Iran, entered into full force in July 2012. To avoid the sanctions, Iranian crude oil importers had to show or pledge significant reductions in their Iranian crude oil purchases to receive a 180-day renewable exemption. South Africa halted Iranian crude oil imports before the July 2012 deadline and was granted exemptions. South Africa has not resumed imports from Iran despite the sanctions on Iran being lifted in 2016. The country continues to substitute Iranian imports with supplies from Saudi Arabia, Nigeria, Angola, and other countries.

Table 2. South African crude oil refinery capacityRefineryCompanyLocationCapacity (b/d)SaprefShell and BP PLC PetroleumDurban170,000EnrefEngen PetroleumDurban135,000ChevrefSinopec (formerly owned by Chevron)Cape Town100,000NatrefNational Petroleum Refiners of South AfricaSasolburg88,000Total 493,000Source: Oil & Gas Journal, January 2017

Figure 7. South Africa's crude oil and condensate imports, by country of origin, 2016

Electricity

After experiencing chronic power shortages for several years, in 2016, South Africa had a power capacity surplus as a result of new capacity commissioned by both public and private sectors and of weaker electricity demand. South Africa intends to diversify its electricity generation portfolio to include cleaner-burning fuels such as natural gas and renewable energy.

South Africa’s electricity generation has declined overall from 2007 to 2016 by more than 4% as a result of economic weakness, downward pressures on commodity markets, inadequate fuel supply and capacity to meet demand, and rising electricity costs. Gross electricity generation was around 250 Terawatthours (TWh) in 2015 and 2016.[48]

Eskom supplies approximately 90% of South Africa’s electricity, and the remainder comes from independent power producers (IPPs) and imports.[49] South Africa is a member of the Southern African Power Pool (SAPP), which began in 1996 as the first formal international power pool in Africa, with a mission to provide reliable and economical electricity supply to consumers in SAPP-member countries. Eskom exports electricity to Lesotho, Namibia, Botswana, Zimbabwe, Mozambique, Swaziland, and Zambia, and it imports electricity from Lesotho, Mozambique, Zambia, and Zimbabwe.[50]

South Africa’s installed electricity capacity was about 53 gigawatts (GW) in September 2017, although total net maximum capacity (installed capacity minus the amount the power station uses to operate) is lower. Of this capacity, 76% of South Africa’s installed electricity capacity is coal-fired, 7% petroleum liquids- or natural gas-fired at open-cycle plants, 7% hydroelectric, 4% nuclear, and 6% from nonhydro renewable energy (Table 3).[51] South Africa plans to diversify its electricity generation mix to ensure greater energy security and reduce its environmental emissions.

South Africa has struggled with a constrained electricity system over the past decade because the margin between peak demand and available electricity supply was extremely narrow. Reserve margins were low because of aging coal-fired power plants, insufficient investment in power infrastructure, and mismanagement of the sector. Load shedding (scheduled power cuts) during peak demand periods occurred frequently between 2013 and 2015, and the lack of electricity security has negatively affected the country’s industries and economic growth. However, at close to 90%, South Africa still had one of the highest electrification rates in Africa as of 2016.[52] South Africa intends to provide electricity access to all households by 2030.[53]

In response to chronic power shortages and the need to ensure a more diverse fuel supply, South Africa began a procurement program in 2011 to purchase power from renewable sources and lower-emitting energy plants funded by IPPs. This program has added 5 GW of generation capacity to the grid, mostly from facilities fueled by wind, solar, and natural gas. South Africa’s capacity target from IPP procurement is 29 GW by 2025.[54]

In 2015, South Africa’s Department of Energy released a natural gas plan to develop the country’s natural gas infrastructure and to meet increasing demand with future LNG imports and indigenous production. Underlying the plan is the construction of 3.7 GW of new natural gas-fired capacity through the IPP program by 2025. Most of the capacity is expected to be sourced from LNG. The government expects to issue a request for proposal for companies to bid on development of LNG and associated natural gas-fired power plants by 2018.[55]

South Africa’s renewable energy industry is small, but the country has expanded its renewable electricity capacity through the IPP Procurement Program. IPPs added 3.3 GW of renewable capacity to the grid between 2011 and early 2017. Eskom also completed its new Ingula hydroelectric facility with 1.3 GW of capacity in 2017.[56] As part of its Integrated Energy Plan, South Africa aims to commission 17.8 GW of renewable energy capacity by 2030, in line with its overall goal to lower carbon emissions and to diversify the fuels portfolio for power generation.[57]

Eskom is also increasing its own production capacity by building more efficient coal-fired units and converting some diesel-fired power stations to more efficient natural gas-fired combined-cycle units. Eskom is developing the country’s first massive supercritical coal-fired power plants—Medupi and Kusile—with a combined installed capacity of nearly 10 GW from 12 units. The plants are coming online in stages. The Medupi plant has brought two units online, and the Kusile facility has brought one unit online (combined 2.4 GW of installed capacity) since 2015. The other units of these two plants are slated to be online by 2022. Although the government has discussed decommissioning several of its old coal-fired units as new plants come online, Eskom plans to study each facility to determine the best course of action.[58]

Recent plant additions have resulted in a surplus power capacity in South Africa. Overall plant availability was back up to 77% from lows of about 70% in 2015. The government aims to improve plant maintenance and raise the electricity availability factor to 80% by 2020.[59]

Table 3. South Africa's power stations and installed capacity [1] (unit: megawatts)Coal-fired plants Hydroelectricity   Arnot2,352Conventional hydro stations   Camden1.561   Gariep360   Duvha3,600   Vanderkloof240   Grootvelei1,180Pumped storage schemes   Hendrina1,893   Drakensberg1,000   Kendal4,116   Palmiet400   Komati990  Ingula1,332   Kriel3,000Other hydropower stations   Lethabo3,708   Colley Wobbles42   Majuba4,110   Second Falls11   Matimba3,990   First Falls6   Matla3,600   Ncora2   Tutuka3,654Other renewable energy stations   Medupi (operational)1,588   Sere Wind Facility100   Kusile (operational)800     Gas/liquid turbine stationsNuclearAcacia171  Koeberg1,940Port Rex171  Ankerlig1,338  Gourikwa746  Independent Power Producers (IPPs) [2]5,027Total installed capacity (existing)53,028Eskom planned capacity additions (Medupi and Kusile)7,176[1] The table provides installed capacity, which is higher than the country's actual total net maximum capacity.[2] Capacity among IPP-owned power stations represents total installed capacity owned by independent companies. All other power plants in the table are owned by Eskom, South Africa's state-owned utility company.Source: Eskom Integrated Report, March 2017; Eskom media reports.

3
1 0

Something interesting to share?
Join NrgEdge and create your own NrgBuzz today

Latest NrgBuzz

Is Document Verification effective in managing identity theft?

Technology has indeed changed the way we think, act and react. Every activity we perform is directly or indirectly linked to technology one way or another. Like everything else, technology also has its pros and cons, depending on the way it is used. Since the advancement in cyberspace, scammers and hackers have started using advanced means to conduct fraud and cause damage to individuals as well as businesses online. 

According to the Federal Trade Commission (FTC), 1.4 million cases of fraud were reported in 2018 and in 25% of the cases, people said they lost money. People reported losing $1.48 billion to fraudulent practices in 2018. This has caused considerable loss to individuals and businesses. Global regulatory authorities have introduced KYC and AML compliances that businesses and individuals are encouraged to follow. However, banks and financial institutions have to follow them under all circumstances.

KYC or Know Your Customer refers to the process where a business attains information about its customers to verify their identities. It is a complex, time-taking process and customers nowadays don’t have the time or resources to deal with the government, consulate, and embassy offices for their KYC procedures. However, due to technological advancement, the identity verification process has been automated through the use of artificial intelligence systems. These systems seamlessly increase the accuracy and effectiveness of the identity verification process while reducing time and human efforts.


The following methods are used to digitally authenticate identities nowadays:

  • Face Verification

The use of artificial intelligence systems to detect facial structure and features for verification purposes.

  • Document Verification

The use of artificial intelligence systems to detect the authenticity of various documents to prevent fraud.

  • Address Verification

The use of artificial intelligence technology to verify addresses from documents to minimize the threat of fraudsters.

  • 2-Factor Authentication

The use of multi-step verification to enhance the protection of your accounts by adding another security layer, usually involving your mobile phone.

  • Consent Verification

The use of pre-set handwritten user consent to onboard only legitimate individuals.


Digital Document Verification

Document verification is an important method to conduct KYC or verify the identity of an individual. The process involves the end-user verifying the authenticity of his/her documents. In banks, financial institutions and other formal set-ups, customers are required to verify their personal details through the display of government-issued documents. The artificial intelligence software checks whether the documents are genuine or have been forged. If the documents are real and authentic, the digital documentation verification is completed and vice versa. 

There are four steps that are mainly involved in the digital document verification process. First, the user displays his/her identity documents in front of the device camera. Then the document is critically analyzed by artificial intelligence software to check its authenticity. Forged or edited documents are rejected by the software. The artificial intelligence system then extracts relevant information from the document using OCR technology. The information is sent to the back-office of the verification provider and analyzed by human representatives to further validate the authenticity. Then the results are sent to the business or individual asking for the verification. The whole process takes less than five minutes.

The document authentication process can detect both major and minor faults in the documents. It can detect errors and faults in forged documents, counterfeed documents, stolen documents, camouflage or hidden documents, replica documents and even compromised documents. The verification process can be done on a personal computer or a mobile device using a camera. Although only government-issued documents are used for the authentication process, the following are accepted by most verification providers:

  • Govt ID Cards

  • Passports

  • Driving Licenses

  • Credit/Debit Cards

Illegal and fraudulent transactions have dangerous consequences for both individuals as well as businesses. Losses due to scams and frauds trickle down at every level and ultimately have negative consequences on the whole system. Therefore it is imperative to conduct proper customer verification and due diligence in order to minimize the risks of fraud. Digital documentation verification plays a key role in the KYC process. 



April, 02 2020
Your Weekly Update: 23 - 27 March 2020

Market Watch   

Headline crude prices for the week beginning 23 March 2020 – Brent: US$27/b; WTI: US$23/b

  • After falling to an 18-year low last week, crude oil prices have managed to recover from their lowest level since 2003… but just barely
  • A huge swathe of economic stimulus packages announced by governments worldwide, including a US$2 trillion bipartisan injection in the US economy, soothed financial markets, which in turn supported commodity prices
  • More stimulus, however, may be needed as confirmed Covid-19 cases in Italy and the USA overtake China’s total, with the pandemic increasingly containing in the latter but accelerating at a dangerous pace in Europe and North America
  • While the Covid-19 saga plays out, former allies Saudi Arabia and Russia remain at odds over crude oil prices; Russian President Vladimir Putin has accused Saudi Arabia of ‘oil price blackmail’, vowing not to cave in
  • However, various reports from Russia suggest the low crude prices are beginning to bite economically, with Russia still ‘open to cooperation’ but committed to a war of attrition
  • With Saudi Arabia unlikely to want to cave either, the USA is exercising its muscle in an attempt to intervene in the price war; the Department of Energy will be purchasing some 77 million barrels of (US) crude to bring its Strategic Petroleum Reserve to maximum capacity
  • Meanwhile, the US is reportedly also open to a joint US-Saudi Arabia alliance in a bid to stabilise prices, a scenario that was previously unthinkable but may be necessary if the US shale patch is to be saved; such an alliance, however, is likely to invite reprisals from Russia
  • The record low crude oil prices has led some traders to build up positions, hiring tankers and supertankers to store crude and fuel products at sea while betting that prices will eventually rise; the world’s largest oil trader Glencore has chartered one of the world’s two Ultra Large Crude Carriers for six months to serve as floating storage, while other traders are beginning to store jet fuel
  • As expected, the low prices have begun to bite on the US active rig count, which fell by a net 20 to 772 sites; the situation is worse in Canada, where the industry lost 77 sites over the week to fall to 98 active sites
  • While prices have managed to recover from their lows, the outlook for crude remains weak as long as the oil price war persists and the Covid-19 pandemic shows no sign of containment; expect prices to remain rangebound at US$28-30/b range for Brent and US$23-25 for WTI

Headlines of the week

Upstream

  • CNOOC has announced a new ‘large-sized’ oil discovery in the Bohai Bay, with the Kenli 6-1 structure being the first major discovery in the Laibei Lower Uplift
  • Husky has halted work on the West White Rose project offshore Newfoundland and Labrador in Canada until the Covid-19 pandemic blows over
  • MOL and its partners in the PL820S in the Norwegian North Sea have struck oil, with the Evra and Iving exploratory wells fielding oil (and gas) in multiple formations in the Balder and Ringhorne fields; the discoveries are expected to be developed as a tie-back to nearby existing installations
  • Malaysia is preparing for its 2020 licensing round – with bids due in late May – offering stakes in eight fields, which include discovered assets with more than 12 million boe of proven undeveloped resources

Midstream/Downstream

  • Brazil’s Petrobras has extended the deadline to submit binding offers for eight of its refineries in Brazil, hampered by the volatility in global oil prices
  • Shell has paused construction of its massive ethane cracker in Beaver Country, Pennsylvania to help contain the rapid spread of Covid-19 in the USA
  • A second fire in less than a year has broken out at the Petronas-Saudi Aramco 300 kb/d PRefChem refinery in Malaysia, with output likely to be further curbed by a strict lockdown on private operations instituted by the government
  • Work on upgrading the Abadan oil refinery in Iran has been halted until at least mid-April, until the Covid-19 situation in the country is under control
  • Gazprom has started up a new CDU at its Moscow refinery, adding some 140 kb/d of processing capacity to the key processing site

Natural Gas/LNG

  • After almost two decades of attempted development, the Abadi LNG project in Indonesia may be in jeopardy as Japan’s Inpex is ‘reviewing investment plans’ in light of the Covid-19 virus; a delay is very likely, although Inpex has recently secured key land permits for the project’s planned onshore LNG plant
  • Australia is planning legislation to lift the country’s current moratorium on onshore gas exploration and production in 2021, following a cautious green-light by the Victorian Gas Program task force
  • US regulators have given Cameron LNG an additional four years to complete a two-train expansion at its LNG export project in Louisiana
  • Sempra expects to delay FID on its Port Arthur LNG export project, but remains on course to sanction its Energia Costa Azul project by Q2 2020
  • The Woodfibre LNG project in Canada’s British Columbia has delayed construction until 2021, as a key contractor filed for bankruptcy
  • Total has announced a new gas/condensate discovery in the UK North Sea – with the Isabella 30/12d-11 well in license P1820 yielding ‘encouraging flows’
  • INOX India and an Indian subsidiary of Shell have signed an MoU to partner and develop LNG demand and distribution, to be sourced from Shell Energy India’s 5 million tpa LNG receiving terminal in Hazira, Gujarat
March, 27 2020
This Week in Petroleum: Oil market volatility is at an all-time high

Crude oil prices have fallen significantly since the beginning of 2020, largely driven by the economic contraction caused by the 2019 novel coronavirus disease (COVID19) and a sudden increase in crude oil supply following the suspension of agreed production cuts among the Organization of the Petroleum Exporting Countries (OPEC) and partner countries. With falling demand and increasing supply, the front-month price of the U.S. benchmark crude oil West Texas Intermediate (WTI) fell from a year-to-date high closing price of $63.27 per barrel (b) on January 6 to a year-to-date low of $20.37/b on March 18 (Figure 1), the lowest nominal crude oil price since February 2002.

Figure 1. West Texas Intermediate crude oil futures prices

WTI crude oil prices have also fallen significantly along the futures curve, which charts monthly price settlements for WTI crude oil delivery over the next several years. For example, the WTI price for December 2020 delivery declined from $56.90/b on January 2, 2020, to $32.21/b as of March 24. In addition to the sharp price decline, the shape of the futures curve has shifted from backwardation—when near-term futures prices are higher than longer-dated ones—to contango, when near-term futures prices are lower than longer-dated ones. The WTI 1st-13th spread (the difference between the WTI price in the nearest month and the price for WTI 13 months away) settled at -$10.34/b on March 18, the lowest since February 2016, exhibiting high contango. The shift from backwardation to contango reflects the significant increase in petroleum inventories. In its March 2020 Short-Term Energy Outlook (STEO), released on March 11, 2020, the U.S. Energy Information Administration (EIA) forecast that Organization for Economic Cooperation and Development (OECD) commercial petroleum inventories will rise to 2.9 billion barrels in March, an increase of 20 million barrels over the previous month and 68 million barrels over March 2019 (Figure 2). Since the release of the March STEO, changes in various oil market and macroeconomic indicators suggest that inventory builds are likely to be even greater than EIA’s March forecast.

Figure 2. Crude oil futures price spreads and inventories

Significant price volatility has accompanied both price declines and price increases. Since 1999, 69% of the time, daily WTI crude oil prices increased or decreased by less than 2% relative to the previous trading day. Daily oil price changes during March 2020 have exceeded 2% 13 times (76% of the month’s traded days) as of March 24. For example, the 10.1% decline on March 6 after the OPEC meeting was larger than 99.8% of the daily percentage price decreases since 1999. The 24.6% decline on March 9 and the 24.4% decline on March 18 were the largest and second largest percent declines, respectively, since at least 1999 (Figure 3).

Figure 3. Frequency of West Texas Intermediate (WTI) futures daily price percentage changes (January 1999 - March 2020)

On March 10, a series of government announcements indicated that emergency fiscal and monetary policy were likely to be forthcoming in various countries, which contributed to a 10.4% increase in the WTI price, the 12th-largest daily increase since 1999. During other highly volatile time periods, such as the 2008 financial crisis, both large price increases and decreases occurred in quick succession. During the 2008 financial crisis, the largest single-day increase—a 17.8% rise on September 22, 2008—was followed the next day by the largest single-day decrease, a 12.0% fall on September 23, 2008.

Market price volatility during the first quarter of 2020 has not been limited to oil markets (Figure 4). The recent volatility in oil markets has also coincided with increased volatility in equity markets because the products refined from crude oil are used in many parts of the economy and because the COVID-19-related economic slowdown affects a broad array of economic activities. This can be measured through implied volatility—an estimate of a security’s expected range of near-term price changes—which can be calculated using price movements of financial options and measured by the VIX index for the Standard and Poor’s (S&P) 500 index and the OVX index for WTI prices. Implied volatility for both the S&P 500 index and WTI are higher than the levels seen during the 2008 financial crisis, which peaked on November 20, 2008, at 80.9 and on December 11, 2008, at 100.4, respectively, compared with 61.7 for the VIX and 170.9 for the OVX as of March 24.

Figure 4. Changes in implied and historical volatility measures

Comparing implied volatility for the S&P 500 index with WTI’s suggests that although recent volatility is not limited to oil markets, oil markets are likely more volatile than equity markets at this point. The oil market’s relative volatility is not, however, in and of itself unusual. Oil markets are almost always more volatile than equity markets because crude oil demand is price inelastic—whereby price changes have relatively little effect on the quantity of crude oil demanded—and because of the relative diversity of the companies constituting the S&P 500 index. But recent oil market volatility is still historically high, even in comparison to the volatility of the larger equity market. As denoted by the red line in the bottom of Figure 4, the difference between the OVX and VIX reached an all-time high of 124.1 on March 23, compared with an average difference of 16.8 between May 2007 (the date the OVX was launched) and March 24, 2020.

Markets currently appear to expect continued and increasing market volatility, and, by extension, increasing uncertainty in the pricing of crude oil. Oil’s current level of implied volatility—a forward-looking measure for the next 30 days—is also high relative to its historical, or realized, volatility. Historical volatility can influence the market’s expectations for future price uncertainty, which contributes to higher implied volatility. Some of this difference is a structural part of the market, and implied volatility typically exceeds historical volatility as sellers of options demand a volatility risk premium to compensate them for the risk of holding a volatile security. But as the yellow line in Figure 4 shows, the current implied volatility of WTI prices is still higher than normal. The difference between implied and historical volatility reached an all-time high of 44.7 on March 20, compared with an average difference of 2.3 between 2007 and March 2020. This trend could suggest that options (prices for which increase with volatility) are relatively expensive and, by extension, that demand for financial instruments to limit oil price exposure are relatively elevated.

Increased price correlation among several asset classes also suggests that similar economic factors are driving prices in a variety of markets. For example, both the correlation between changes in the price of WTI and changes in the S&P 500 and the correlation between WTI and other non-energy commodities (as measured by the S&P Commodity Index (GSCI)) increased significantly in March. Typically, when correlations between WTI and other asset classes increase, it suggests that expectations of future economic growth—rather than issues specific to crude oil markets— tend to be the primary drivers of price formation. In this case, price declines for oil, equities, and non-energy commodities all indicate that concerns over global economic growth are likely the primary force driving price formation (Figure 5).

Figure 5. Rolling 60-day correlation between daily price changes in West Texas Intermediate (WTI) crude oil prices and other indicators

U.S. average regular gasoline and diesel prices fall

The U.S. average regular gasoline retail price fell nearly 13 cents from the previous week to $2.12 per gallon on March 23, 50 cents lower than a year ago. The Midwest price fell more than 16 cents to $1.87 per gallon, the West Coast price fell nearly 15 cents to $2.88 per gallon, the East Coast and Gulf Coast prices each fell nearly 11 cents to $2.08 per gallon and $1.86 per gallon, respectively, and the Rocky Mountain price declined more than 8 cents to $2.24 per gallon.

The U.S. average diesel fuel price fell more than 7 cents from the previous week to $2.66 per gallon on March 23, 42 cents lower than a year ago. The Midwest price fell more than 9 cents to $2.50 per gallon, the West Coast price fell more than 7 cents to $3.25 per gallon, the East Coast and Gulf Coast prices each fell nearly 7 cents to $2.72 per gallon and $2.44 per gallon, respectively, and the Rocky Mountain price fell more than 6 cents to $2.68 per gallon.

Propane/propylene inventories decline

U.S. propane/propylene stocks decreased by 1.8 million barrels last week to 64.9 million barrels as of March 20, 2020, 15.5 million barrels (31.3%) greater than the five-year (2015-19) average inventory levels for this same time of year. Gulf Coast inventories decreased by 1.3 million barrels, East Coast inventories decreased by 0.3 million barrels, and Rocky Mountain/West Coast inventories decrease by 0.2 million barrels. Midwest inventories increased by 0.1 million barrels. Propylene non-fuel-use inventories represented 8.5% of total propane/propylene inventories.

Residential heating fuel prices decrease

As of March 23, 2020, residential heating oil prices averaged $2.45 per gallon, almost 15 cents per gallon below last week’s price and nearly 77 cents per gallon lower than last year’s price at this time. Wholesale heating oil prices averaged more than $1.11 per gallon, almost 14 cents per gallon below last week’s price and 98 cents per gallon lower than a year ago.

Residential propane prices averaged more than $1.91 per gallon, nearly 2 cents per gallon below last week’s price and almost 49 cents per gallon below last year’s price. Wholesale propane prices averaged more than $0.42 per gallon, more than 7 cents per gallon lower than last week’s price and almost 36 cents per gallon below last year’s price.

March, 27 2020