NrgEdge Editor

Sharing content and articles for users
Last Updated: October 3, 2019
1 view
Business Trends
image

In the first half of 2019, U.S. exports of crude oil increased to average 2.9 million barrels per day (b/d), an increase of 966,000 b/d from the first half of 2018. Also in the first half of 2019, U.S. crude oil exports set a new record-high monthly average of 3.2 million b/d in June 2019 (Figure 1). The number of U.S. crude oil export destinations also continued to grow, and now exceeds the number of U.S. crude oil import sources.

Figure 1. U.S. crude oil exports (1H2019)

Asia was the largest regional destination for U.S. crude oil exports—1.3 million b/d in the first half of 2019—followed by destinations in Western Europe, which received 824,000 b/d. U.S. crude oil exports to North America, which almost exclusively go to Canada (the largest single destination for U.S. crude oil exports globally) did not change much from the first half of 2018 to the first half of 2019, averaging 458,000 b/d.

U.S. crude oil exports to Asia grew significantly in the first half of 2019, up 472,000 b/d (58%) compared with the same period in 2018, despite a large decrease in exports to China. U.S. crude oil exports to China in the first half of 2019 averaged 248,000 b/d (64%) less than the same period last year. This decrease largely reflects continuing trends from the second half of 2018 when U.S. crude oil exports to China decreased significantly.

Increased U.S. crude oil exports to other destinations in Asia offset the drop in volumes to China. U.S. crude oil exports to South Korea increased 278,000 b/d (246%), exports to India increased 154,000 b/d (114%), and exports to Taiwan increased 109,000 b/d (133%) in the first half of 2019 compared with the first half of 2018.

U.S. crude oil exports to Western Europe also increased 327,000 b/d (66%) during this time. First-half 2019 exports to the Netherlands increased 173,000 b/d (192%) and exports to the United Kingdom increased 74,000 b/d (53%) compared with first half 2018 (Figure 2).

Figure 2. U.S. crude oil exports top destinations (1H2019)

As U.S. crude oil export volumes have increased, so have the number of export destinations. During first half of 2019, the number of U.S. crude oil export destinations surpassed the number of U.S. crude oil import sources. In 2009, the United States imported crude oil from an average of 35 sources each month. A decade later, in the first half of 2019, the average number of sources fell to 26. After the restrictions on exporting domestic crude oil were lifted at the end of 2015, the number of U.S. crude oil export destinations has increased to more than 30 as of the end of the first half of 2019 (Figure 3). Between January 2016 (the first full month of unrestricted U.S. crude oil exports) and June 2019, U.S. crude oil production has increased by 2.9 million b/d. During that same period, U.S. crude oil exports increased 2.7 million b/d, the equivalent of 98% of the absolute crude oil production increase.

Figure 3. Number of crude oil export destinations versus crude oil import sources

Increasing U.S. crude oil production has both reduced crude oil imports and increased crude oil exports, but the reasons for changes in each are complex.

Fewer crude oil import sources is the result of increased U.S. production of light-sweet crude oils whereas most U.S. refineries are configured to process medium- to heavy- sour crude oils. The U.S. Energy Information Administration’s (EIA) report Technical Options for Processing Additional Light Tight Oil Volumes Within the United States, explains how U.S. refineries have accommodated much of the growth in U.S. crude oil production since 2010 with two limited- or no-investment-cost options: displacing imports of crude oil (primarily light crude oil, but also medium crude oil) from countries other than Canada and increasing refinery utilization rates. Displacing light crude oil imports has both reduced the volume of crude oil the United States imports and the number of sources.

The increase in the number of U.S. crude oil export destinations is the result of

  • Growing demand from refineries abroad for light-sweet crude oil
  • Interconnected infrastructure to export greater volumes of U.S. crude oil
  • Developing infrastructure to enable larger cargo sizes

National and international regulations increasingly limit the amount of sulfur present in transportation fuels. As global demand for heavy residual oils declines, many less complex refineries outside the United States, which can’t process and remove sulfur from heavy-sour crude oils, are processing more of the lighter and sweeter crude oils. To supply this increasing demand, U.S. port infrastructure along the U.S. Gulf Coast is expanding to accommodate increased crude oil tanker traffic and larger crude oil tankers loading for export. In addition, new and expanded pipelines are being built to transport crude oil from areas such as the Permian and Eagle Ford to the U.S. Gulf Coast.

U.S. average regular gasoline and diesel prices fall

The U.S. average regular gasoline retail price fell more than 1 cent from the previous week to $2.64 per gallon on September 30, 22 cents lower than the same time last year. The Midwest price fell by nearly 10 cents to $2.49 per gallon, the East Coast price fell by more than 3 cents to $2.51 per gallon, and the Gulf Coast price fell by nearly 3 cents to $2.33 per gallon. The West Coast price rose by 21 cents to $3.55 per gallon, and the Rock Mountain price increased by more than 1 cent to $2.71 per gallon.

The U.S. average diesel fuel price fell nearly 2 cents to $3.07 per gallon on September 30, 25 cents lower than a year ago. The Gulf Coast price fell by more than 3 cents to $2.83 per gallon, the East Coast price fell by nearly 2 cents to $3.07 per gallon, the West Coast and Midwest prices fell by nearly 1 cent, remaining at $3.65 per gallon and $2.99 per gallon, respectively, and the Rocky Mountain price fell less than 1 cent, remaining at $3.03 per gallon.

Propane/propylene inventories rise

U.S. propane/propylene stocks increased by 1.0 million barrels last week to 100.6 million barrels as of September 27, 2019, 13.0 million barrels (14.8%) greater than the five-year (2014-18) average inventory levels for this same time of year. Midwest, Gulf Coast, and East Coast inventories increased by 0.5 million barrels, 0.4 million barrels, and 0.2 million barrels, respectively. Rocky Mountain/West Coast inventories decreased by 0.1 million barrels. Propylene non-fuel-use inventories represented 4.3% of total propane/propylene inventories.

Canada China crude oil exports imports production supply
3
2 0

Something interesting to share?
Join NrgEdge and create your own NrgBuzz today

Latest NrgBuzz

Natural gas generators make up largest share of U.S. electricity generation capacity

operating natural-gas fired electric generating capacity by online year

Source: U.S. Energy Information Administration, Annual Electric Generator Inventory

Based on the U.S. Energy Information Administration's (EIA) annual survey of electric generators, natural gas-fired generators accounted for 43% of operating U.S. electricity generating capacity in 2019. These natural gas-fired generators provided 39% of electricity generation in 2019, more than any other source. Most of the natural gas-fired capacity added in recent decades uses combined-cycle technology, which surpassed coal-fired generators in 2018 to become the technology with the most electricity generating capacity in the United States.

Technological improvements have led to improved efficiency of natural gas generators since the mid-1980s, when combined-cycle plants began replacing older, less efficient steam turbines. For steam turbines, boilers combust fuel to generate steam that drives a turbine to generate electricity. Combustion turbines use a fuel-air mixture to spin a gas turbine. Combined-cycle units, as their name implies, combine these technologies: a fuel-air mixture spins gas turbines to generate electricity, and the excess heat from the gas turbine is used to generate steam for a steam turbine that generates additional electricity.

Combined-cycle generators generally operate for extended periods; combustion turbines and steam turbines are typically only used at times of peak load. Relatively few steam turbines have been installed since the late 1970s, and many steam turbines have been retired in recent years.

natural gas-fired electric gnerating capacity by retirement year

Source: U.S. Energy Information Administration, Annual Electric Generator Inventory

Not only are combined-cycle systems more efficient than steam or combustion turbines alone, the combined-cycle systems installed more recently are more efficient than the combined-cycle units installed more than a decade ago. These changes in efficiency have reduced the amount of natural gas needed to produce the same amount of electricity. Combined-cycle generators consume 80% of the natural gas used to generate electric power but provide 85% of total natural gas-fired electricity.

operating natural gas-fired electric generating capacity in selected states

Source: U.S. Energy Information Administration, Annual Electric Generator Inventory

Every U.S. state, except Vermont and Hawaii, has at least one utility-scale natural gas electric power plant. Texas, Florida, and California—the three states with the most electricity consumption in 2019—each have more than 35 gigawatts of natural gas-fired capacity. In many states, the majority of this capacity is combined-cycle technology, but 44% of New York’s natural gas capacity is steam turbines and 67% of Illinois’s natural gas capacity is combustion turbines.

October, 19 2020
EIA’s International Energy Outlook analyzes electricity markets in India, Africa, and Asia

Countries that are not members of the Organization for Economic Cooperation and Development (OECD) in Asia, including China and India, and in Africa are home to more than two-thirds of the world population. These regions accounted for 44% of primary energy consumed by the electric sector in 2019, and the U.S. Energy Information Administration (EIA) projected they will reach 56% by 2050 in the Reference case in the International Energy Outlook 2019 (IEO2019). Changes in these economies significantly affect global energy markets.

Today, EIA is releasing its International Energy Outlook 2020 (IEO2020), which analyzes generating technology, fuel price, and infrastructure uncertainty in the electricity markets of Africa, Asia, and India. A related webcast presentation will begin this morning at 9:00 a.m. Eastern Time from the Center for Strategic and International Studies.

global energy consumption for power generation

Source: U.S. Energy Information Administration, International Energy Outlook 2020 (IEO2020)

IEO2020 focuses on the electricity sector, which consumes a growing share of the world’s primary energy. The makeup of the electricity sector is changing rapidly. The use of cost-efficient wind and solar technologies is increasing, and, in many regions of the world, use of lower-cost liquefied natural gas is also increasing. In IEO2019, EIA projected renewables to rise from about 20% of total energy consumed for electricity generation in 2010 to the largest single energy source by 2050.

The following are some key findings of IEO2020:

  • As energy use grows in Asia, some cases indicate more than 50% of electricity could be generated from renewables by 2050.
    IEO2020 features cases that consider differing natural gas prices and renewable energy capital costs in Asia, showing how these costs could shift the fuel mix for generating electricity in the region either further toward fossil fuels or toward renewables.
  • Africa could meet its electricity growth needs in different ways depending on whether development comes as an expansion of the central grid or as off-grid systems.
    Falling costs for solar photovoltaic installations and increased use of off-grid distribution systems have opened up technology options for the development of electricity infrastructure in Africa. Africa’s power generation mix could shift away from current coal-fired and natural gas-fired technologies used in the existing central grid toward off-grid resources, including extensive use of non-hydroelectric renewable generation sources.
  • Transmission infrastructure affects options available to change the future fuel mix for electricity generation in India.
    IEO2020 cases demonstrate the ways that electricity grid interconnections influence fuel choices for electricity generation in India. In cases where India relies more on a unified grid that can transmit electricity across regions, the share of renewables significantly increases and the share of coal decreases between 2019 and 2050. More limited movement of electricity favors existing in-region generation, which is mostly fossil fuels.

IEO2020 builds on the Reference case presented in IEO2019. The models, economic assumptions, and input oil prices from the IEO2019 Reference case largely remained unchanged, but EIA adjusted specific elements or assumptions to explore areas of uncertainty such as the rapid growth of renewable energy.

Because IEO2020 is based on the IEO2019 modeling platform and because it focuses on long-term electricity market dynamics, it does not include the impacts of COVID-19 and related mitigation efforts. The Annual Energy Outlook 2021 (AEO2021) and IEO2021 will both feature analyses of the impact of COVID-19 mitigation efforts on energy markets.

Asia infographic, as described in the article text


Source: U.S. Energy Information Administration, International Energy Outlook 2020 (IEO2020)
Note: Click to enlarge.

With the IEO2020 release, EIA is publishing new Plain Language documentation of EIA’s World Energy Projection System (WEPS), the modeling system that EIA uses to produce IEO projections. EIA’s new Handbook of Energy Modeling Methods includes sections on most WEPS components, and EIA will release more sections in the coming months.

October, 16 2020
Global liquid fuels production outages have increased in 2020

Disruptions to crude oil and condensate production from members of the Organization of the Petroleum Exporting Countries (OPEC) and non-OPEC countries have risen considerably since last year. These outages have contributed to reduced liquid fuel supply and, along with crude oil production declines agreed to among OPEC and partner countries (OPEC+), have contributed to global liquid fuels inventory draws since June.

So far in 2020, monthly oil supply disruptions have averaged 4.6 million barrels per day (b/d) and reached 5.2 million b/d in June, the highest monthly levels since at least 2011, when the U.S. Energy Information Administration (EIA) began tracking monthly liquids production outages. Global oil supply disruptions averaged 3.1 million b/d in 2019, and rising outages in Iran have been the main drivers of the year-on-year increase. EIA does not include field closures for economic reasons or oil demand declines in its accounting of supply disruptions.

Libya, Venezuela, and Iran (the OPEC countries exempt from the latest OPEC+ agreement) were the main contributors to these outages. Domestic political instability in Libya has removed about 1.2 million b/d from oil production since February 2020. The Libyan National Army, the warring faction in eastern Libya, blockaded five of the country’s oil export terminals and shut in oil production from major fields in the southwestern region in January 2020, causing Libya’s production to fall to less than 100,000 b/d by April.

U.S. sanctions have led to production outages in Venezuela and Iran. U.S. sanctions placed on oil-trading companies and shipping companies that facilitated exports of Venezuela’s crude oil in the first half of 2020 removed 500,000 b/d of crude oil production from global markets by August. Ongoing U.S. sanctions on Iran’s crude oil and condensate exports have kept Iran’s disruption levels elevated through 2020, and disruptions there have increased by another 100,000 b/d since January.

Non-OPEC oil supply disruptions, mostly from the United States and Canada, rose to nearly 800,000 b/d in August. Disruptions in Canada occurred when operators ordered nonessential staff to stop work because of coronavirus outbreaks at production sites. In the United States, hurricane-related disruptions and unplanned maintenance affected oil production this summer. Other non-OPEC countries experienced temporary field closures for various reasons such as coronavirus outbreaks among workers, logistical issues moving workers or equipment during the pandemic, fires at field operations in Canada, or other natural disasters.

EIA publishes historical unplanned production outage estimates in its Short-Term Energy Outlook (STEO). In its estimates of outages, EIA differentiates among declines in production resulting from unplanned production outages, permanent losses of production capacity, and voluntary production cutbacks. EIA’s estimates of unplanned production outages are calculated as the difference between estimated effective production capacity (the level of supply that could be available within one year) and estimated production.

October, 14 2020