NrgEdge Editor

Sharing content and articles for users
Last Updated: January 15, 2020
1 view
Business Trends

To operate well is to operate responsibly—but more must be done on sustainable design and balanced portfolios to achieve a net-zero future.

Hydrocarbons have powered economic growth for 150 years, but their emissions are destabilizing the earth’s climate. Now that the atmospheric impact of fossil fuels is widely recognized, the sector is under increasing pressure. Policy makers, investors, and society are pressing for change, threatening operators’ license to operate.

Operators have responded with strategic convening and conspicuous investments in innovation and diversification. Yet they have barely begun to address the 4.1 GtCO2e of emissions—almost 10 percent of all anthropogenic greenhouse gas—created every year by their own operations, two-thirds of it from upstream.

Technologies to decarbonize the extraction and production of hydrocarbons already exist and many are economically viable, yet the sector’s atmospheric emissions continue to rise. This paper explores why there has been little change so far, and shows how, with a bold vision and the determination to act, the oil and gas sector can step on a different path, an energy pathway that can contribute to limiting the rise in average global temperatures to 1.5°C.

Why so much greenhouse gas? A trio of emission-intensity drivers

Studying the emission intensity of upstream oil and gas assets reveals that three structural factors drive their “well to pipe” emission intensity.

First, resource complexity structurally sets an asset’s emission intensity

All else being equal, the least emission-intensive assets are large producers with high API gravity and low reservoir complexity. The data show that assets with API gravity of 20° or less can be, on average, three times more emission-intensive than those with API gravity of 50° or more. Assets with the highest structural emission intensity in our data set are complex reservoirs: viscous, in deep or ultra-deep water, compartmentalized, or high pressure and temperature. Pressure maintenance during primary production or secondary and tertiary recovery also increases energy and emission intensity. Simulations of GHG emissions from oil production show average emissions doubling over 25 years. In the IEA’s terminology, these are resources with intrinsically low energy return on energy invested (EROI).

Second, processes and engineering are crucial controllable drivers

Complex facilities are typically more energy-intensive, and therefore more emission-intensive. Hub platforms with more equipment and personnel require more energy for running core and auxiliary systems, while high manning levels intensify their logistics, which again increases emissions. A small single-steel-jacket platform is less emission-intensive than an FPSO with complex subsea export infrastructure connecting many complex wells.

Operations benchmarks—and our emission data—both show that the age of a production facility does not limit operational performance. However, older assets face more complex challenges in reducing emission intensity. Older equipment may be less efficient and economically challenging to replace. Aging production facilities may also suffer from higher fugitive emissions as wear parts degrade. On the other hand, process design choices can help offset the challenges of maturity.

Third, routine flaring and venting, if prevalent, can contribute 40 percent of the carbon intensity of hydrocarbon production in a region

In jurisdictions where venting and flaring are still common, such as Russia, Iran, the United States, Algeria, and Nigeria, oil facilities with high gas-to-oil ratios and few export or recovery options will routinely flare or vent the associated gas, emitting large volumes of CO2, some methane, and other volatile organic compounds (VOCs). More widely, fugitive emissions and intermittent flaring and venting materially increase upstream methane emissions, which account for 34 percent of oil-production emissions and 41 percent of gas-production emissions, assuming 100-year global-warming potential. This waste is a problem, but its mitigation presents an economic opportunity.

So what is to be done? The path to decarbonization of upstream operations

In the short term, the structural drivers of emission intensity seem to limit the freedom upstream leaders have to reduce their atmospheric emissions. For producing assets, these constraints appear to be the hand they have been dealt. However, operators can choose how to play this hand, giving them more ways to reduce emission intensity than at first appear. Our operations benchmarks show that raising operational performance has a large impact on emissions. And 90 percent of known technological solutions to decarbonization are within the grasp of operators at a cost of no more than $50/metric ton of carbon.

We describe three levers to reduce emission intensity across the full spectrum of scope 1 (direct) and scope 2 (indirect) emissions from upstream oil and gas operations (Exhibit 1). The first, indisputable, step is optimizing operations—maximizing stability and uptime reduces intermittent flaring and venting, and requires few major process changes. Second, sustainable design choices are now available for deployment and increasingly present a positive economic benefit. Third, producers must start to balance their portfolios across resources with a spread of emission intensity in anticipation of the risks from future policy scenarios and investor choices.

Exhibit 1

The first decarbonization lever: Optimizing operations

Operating well equals operating responsibly. Above all, it is an economical first step in reducing intermittent flaring and venting and fugitive emissions, the third biggest source of emissions. Our analysis shows that across a global sample, once you correct for structural factors, assets in the top decile of production efficiency have the lowest emissions in the sector, based on the stability of their operations. The best can achieve less than 7 kg per barrel of oil equivalent, whereas assets in the third quartile emit at least three times as much.

To catch up, lower-performing assets must address three areas. First, resolve repeat failures that cause process trips or shutdowns. The flaring or venting of methane and other VOCs as equipment is depressurized for safe maintenance and restart leads to high emission intensity. Second, ensure operating parameters have not diverged significantly from the design envelope due to changes in fluid rates and properties. For example, pumps not running at their best efficiency point not only use more energy, but are also less reliable, both of which lead to higher emissions. Third, find and fix asset-integrity issues that increase fugitive emissions, such as degradation of flange joints, valve glands, or seals.

All three areas can be addressed within current operating models and are the core components of traditional levers to improve operational performance. We observe, on average, that a 10 percent increase in production efficiency delivers a 4 percent reduction in emission intensity, all else being constant. Maximizing stability and integrity may require upgrades of process, controls, and parts. A less capital-intensive route is to leverage data and advanced analytics to help optimize and stabilize operations. Predictive maintenance and automated condition-monitoring can reduce planned interventions and extend runs, improving stability and reducing emissions. Advanced analytics enables the next level of energy efficiency, isolating operating parameters that minimize power per unit throughput.

The second decarbonization lever: Sustainable design

There are multiple sustainable design options to make processes less emission-intensive. However, their use is not yet routine: traditional investment stage gates weight up-front capital costs over other considerations, such as energy efficiency or cost-to-operate. With total life-cycle value as the target function, operators may be more motivated to explore sustainable design. Doing so using proven technologies can not only reduce operating costs, but also generate new revenue streams.

Monetizing wasted gas. By some estimates, 257 bcm of natural gas—equivalent to nearly half the consumption of Europe—is wasted globally in flares, vents, and leaks. If monetized, this could generate nearly $40 billion of revenue globally. New ventures such as Capterio improve data transparency around flaring and install bespoke technological solutions that monetize the gas. Solutions include reinjecting to enhance recovery or disposal, power generation (for own use or grid export), building export routes to destination markets, or installing small-scale converters to create products such as CNG, LPG, GTL or LNG.

Reducing energy demand. Energy costs (including opportunity costs) are close to 15 percent of total production costs; recent work with upstream operators suggests they can save up to 20 percent in energy usage. This makes a compelling business case, with a total prize of up to $10 billion in cost reduction per year for the upstream industry. Modular unmanned installations around a supporting hub, as Norway is building in the NOAKA area, or better still, linked to a remote operations center, are gaining traction. Simpler, modular, and reusable facilities with low equipment counts and manning levels reduce costs and emissions from energy use and logistics.

Using zero-carbon energy supply. Sustainable sources of energy improve conversion efficiencies or generate revenue. Offshore grid-based electrification was first shown to be viable in 2003, when the Abu Safah development, 50 kilometers offshore in Saudi Arabia, started up with a connection to the main grid. More recently, the newly commissioned Johan Sverdrup is powered from shore even though it is 140 kilometers from Stavanger at a water depth of 110 to 120 meters. For more remote platforms, localized renewables generation offers a sustainable design option. Platforms in both the southern North Sea and Norwegian sectors, for instance, have introduced zero-carbon power sources with conventional backup for stand-alone facilities. To improve the economics of their deployment, operators might supply power to clusters of their own and third-party offshore facilities.

Removal through carbon capture, usage, and storage (CCU/S). CCU/S is an increasingly popular decarbonization option as seen in the Norwegian Continental Shelf with an encouraging example of CCU/S collaboration across the industry in the renewed Northern Lights project. When combined with CO2-enhanced recovery, it improves recovery rates in a closed-loop CO2 system and raises both production and emission performance.

The third decarbonization lever: Balanced portfolios

The demands of policy makers and investors are fast evolving. Credible scenarios show shareholders reducing their exposure to high-emitting resources, freezing out operators holding the highest-intensity assets. There are also credible scenarios in which policy and markets accelerate peak oil demand to 2025, thereby raising the cost of capital and making oil and gas unattractive as investments for growth.globall

Integrated oil company portfolios have tilted toward natural gas over the past few years, attracted by its reputation as a transition fuel. More recently, Equinor has announced the ambition to meet a carbon-intensity target of 8 kgCO2e/boe by 2030. Other producers have set emission-reduction targets at varying levels. Bold visions must recognize that the highest-emitting reservoirs are nearly three times more emission-intensive than the lowest-emitting ones. What follows is a set of choices for upstream leaders to make around their field-development plans, resource funnels, and portfolios.

Field-development plans need to weigh recovery factor against the emission performance of different production and pressure maintenance techniques. Likewise, building portfolios with better emission performance would involve high-grading only the lower-intensity resources or those for which sustainable design can fully offset the emission implications of resource complexity. Critical factors are viscosity, water depth, distance from shore, initial pressure, and depletion. If emission intensity were always a decision criterion, or a $50/metric ton carbon price were imputed in shaping resource funnels, investment committees would favor “advantaged” resources—those with higher API gravity, in shallow to medium water or requiring conventional production techniques. Or they might limit offshore investments closer to shore to enable grid-based electrification. The value equation, fortunately, boosts balanced portfolios: breakeven economics of many reservoirs with high emission intensity are marginal at more than $65.

How to make a strong start: The decarbonization fundamentals

Upstream leaders aspiring to reduce emissions must first overcome the uncertainties in understanding the emission performance of their assets and portfolios: what is really driving emissions, which emission sources to tackle urgently, and by how much. We respond to this baselining challenge by drawing on the McKinsey Upstream Energy & Emissions Index (MUEEI), a proprietary upstream energy and emission index of assets of different types and at different life stages. The index brings both consistency and detail, which enable operators to separate the controllable factors in emission intensity across the oil and gas life cycle from the external ones. The following sidebar explains the methodology, using a global sample of offshore assets, and illustrates how to apply the MUEEI in assessing current emission performance and in setting reduction targets.

Decarbonization oil gas upstream McKinsey hydrocarbon MUEEI
2 0

Something interesting to share?
Join NrgEdge and create your own NrgBuzz today

Latest NrgBuzz


The LG XBOOM Go PL2 is the smallest and least expensive offering in LG's latest speaker trio including larger PL7 and PL5 models. All three models share the same design language and all have Meridian-tuned audio.

LG XBOOM PL2 is portable, small and light enough to be transported easily and offers 10 hours of battery life so it can run almost for a full day without being plugged in.

Ratings: 7.2

+ IPX5 water resistant

+ Easy to setup and use

+ Meridian tuned sound

- No integrated voice assistant

- No EQ adjustments

The LG XBOOM PL2 has IPX5 splash proof rating, which means it can withstand being sprayed with water but should not be submerged. We ran it under a faucet for a few seconds and the speaker kept working as it should.

The PL2 is based on version 5.0 of the Bluetooth standard and the range is quite similar to that of other speakers in the same price range. It can remain connected to more than 25 feet indoors from the audio source.

January, 26 2021
The Growing Divergence In Energy

Two acquisitions in the energy sector were announced in the last week that illustrate the growing divergence in approaching the future of oil and gas between Europe and the USA. In France, Total announced that it had bought Fonroche Biogaz, the market leader in the production of renewable gas in France. In North America, ConocoPhillips completed its acquisition of Concho Resources, deepening the upstream major’s foothold into the lucrative Permian Basin and its shale riches. One is heading towards renewables, and the other is doubling down on conventional oil and gas.

What does this say about the direction of the energy industry?

Total’s move is unsurprising. Like almost all of its European peers operating in the oil and gas sector, Total has announced ambitious targets to become carbon-neutral by 2050. It is an ambition supported by the European population and pushed for by European governments, so in that sense, Total is following the wishes of its investors and stakeholders – just like BP, Shell, Repsol, Eni and others are doing. Fonroche Biogaz is therefore a canny acquisition. The company designs, builds and operates anaerobic digestion units that convert organic waste such as farming manure into biomethane to serve a gas feedstock for power generation. Fonroche Biogaz already has close to 500 GWh of installed capacity through seven power generation units with four in the pipeline. This feeds into Total’s recent moves to expand its renewable power generation capacity, with the stated intention of increasing the group’s biomethane capacity to 1.5 terawatts per hour (TWh) by 2025. Through this, Total vaults into a leading position within the renewable gas market in Europe, which is already active through affiliates such as Méthanergy, PitPoint and Clean Energy.

In parallel to this move, Total also announced that it has decided not to renew its membership in the American Petroleum Institute for 2021. Citing that it is only ‘partially aligned’ with the API on climate change issues in the past, Total has now decided that those positions have now ‘diverged’ particularly on rolling back methane emission regulations, carbon pricing and decarbonising transport. The French supermajor is not alone in its stance. BP, which has ditched the supermajor moniker in favour of turning itself into a clean energy giant, has also expressed reservations over the API’s stance over climate issues, and may very well choose to resign from the trade group as well. Other European upstream players might follow suit.

However, the core of the API will remain American energy firms. And the stance among these companies remains pro-oil and gas, despite shareholder pressure to bring climate issues and clean energy to the forefront. While the likes of ExxonMobil and Chevron have balanced significant investments into prolific shale patches in North America with public overtures to embrace renewables, no major US firm has made a public commitment to a carbon-neutral future as their European counterparts have. And so ConocoPhillips acquisition of Concho Resources, which boosts its value to some US$60 billion is not an outlier, but a preview of the ongoing consolidation happening in US shale as the free-for-all days give way to big boy acquisitions following the price-upheaval there since 2019.

That could change. In fact, it will change. The incoming Biden administration marks a significant break from the Trump administration’s embrace of oil and gas. Instead of opening of protected federal lands to exploration, especially in Alaska and sensitive coastal areas and loosening environmental regulations, the US will now pivot to putting climate change at the top of the agenda. Although political realities may water it down, the progressive faction of the Democrats are pushing for a Green New Deal embracing sustainability as the future for the US. Biden has already hinted that he may cancel the controversial and long-running Keystone XL pipeline via executive order on his first day in the office. His nominees for key positions including the Department of the Interior, Department of Energy, Environmental Protection Agency and Council on Environmental Quality suggest that there will be a major push on low-carbon and renewable initiatives, at least for the next 4 years. A pledge to reach net zero fossil fuel emissions from the power sector by 2035 has been mooted. More will come.

The landscape is changing. But the two approaches still apply, the aggressive acceleration adopted by European majors, and the slower movement favoured by US firms. Political changes in the USA might hasten the change, but it is unlikely that convergence will happen anytime soon. There is room in the world for both approaches for now, but the future seems inevitable. It just depends on how energy companies want to get there.

Market Outlook:

  • Crude price trading range: Brent – US$54-56/b, WTI – US$51-53/b
  • Global crude oil benchmarks retreated slightly, as concerns of rising supplies and coronavirus spread impact consumption anticipations; in particular, new Covid-19 outbreaks in key countries such as Japan and China are menacing demand
  • Mapped against the new OPEC+ supply quotas, there is a risk that demand will retreat more than anticipated, weakening prices; however, a leaking pipeline in Libya has reduced oil output there by about 200,000 b/d, which could provide some price support
  • However, the longer-term prognosis remains healthier for oil prices factoring out these short-term concerns; the US EIA has raised its predicted average prices for Brent and WTI to US$52.70 and US$49.70 for the whole of 2021

Get timely updates about latest developments in oil & gas delivered to your inbox. Join our email list and get your targeted content regularly for free.

No alt text provided for this image

Submit Your Details to Download Your Copy Today!

January, 22 2021
EIA expects crude oil prices to average near $50 per barrel through 2022

In its January Short-Term Energy Outlook (STEO), the U.S. Energy Information Administration (EIA) expects global demand for petroleum liquids will be greater than global supply in 2021, especially during the first quarter, leading to inventory draws. As a result, EIA expects the price of Brent crude oil to increase from its December 2020 average of $50 per barrel (b) to an average of $56/b in the first quarter of 2021. The Brent price is then expected to average between $51/b and $54/b on a quarterly basis through 2022.

EIA expects that growth in crude oil production from members of the Organization of the Petroleum Exporting Countries (OPEC) and partner countries (OPEC+) will be limited because of a multilateral agreement to limit production. Saudi Arabia announced that it would voluntarily cut production by an additional 1.0 million b/d during February and March. Even with this cut, EIA expects OPEC to produce more oil than it did last year, forecasting that crude oil production from OPEC will average 27.2 million b/d in 2021, up from an estimated 25.6 million b/d in 2020.

EIA forecasts that U.S. crude oil production in the Lower 48 states—excluding the Gulf of Mexico—will decline in the first quarter of 2021 before increasing through the end of 2022. In 2021, EIA expects crude oil production in this region will average 8.9 million b/d and total U.S. crude oil production will average 11.1 million b/d, which is less than 2020 production.

EIA expects that responses to the recent rise in COVID-19 cases will continue to limit global oil demand in the first half of 2021. Based on global macroeconomic forecasts from Oxford Economics, however, EIA forecasts that global gross domestic product will grow by 5.4% in 2021 and by 4.3% in 2022, leading to energy consumption growth. EIA forecasts that global consumption of liquid fuels will average 97.8 million barrels per day (b/d) in 2021 and 101.1 million b/d in 2022, only slightly less than the 2019 average of 101.2 million b/d.

EIA expects global inventory draws will contribute to forecast rising crude oil prices in the first quarter of 2021. Despite rising forecast crude oil prices in early 2021, EIA expects upward price pressure will be limited through the forecast period because of high global oil inventory, surplus crude oil production capacity, and stock draws decreasing after the first quarter of 2021. EIA forecasts Brent crude oil prices will average $53/b in both 2021 and 2022.

quarterly global liquid fuels production and consumption

Source: U.S. Energy Information Administration, Short-Term Energy Outlook (STEO)

You can find more information on EIA’s expectations for changes in global petroleum liquids production, consumption, and crude oil prices in EIA’s latest This Week in Petroleum article and its January STEO.

January, 22 2021